PRF Research Program
Related Publications
The Progeria Research Foundation (PRF) plays a vital role in promoting Progeria research by leading scientists around the world. Many publications by these scientists acknowledge PRF’s programs. By providing funding through grants; supplying material and data from the Cell and Tissue Bank, Medical and Research Database and the International Progeria Registry; publishing findings from clinical drug trials; and hosting scientific workshops where researchers can discuss their latest findings, PRF continues to drive the research that will eventually lead to a cure for Progeria.
Below is a list, by program, of the many publications that have acknowledged one or more of PRF’s research programs.
PRF Cell and Tissue Bank
Publications Utilizing Material from
The Progeria Research Foundation Cell and Tissue Bank
2025
Hutchinson-Gilford Progeria Syndrome
Gordon LB, Brown WT, Collins FS. 2003 Dec 12 [Updated 2025 Mar 13]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025.
Circular RNA Telomerase Reverses Endothelial Senescence in Progeria
Qin W, Castillo KD, Li H, et al. Aging Cell. Published online February 23, 2025. doi:10.1111/acel.70021
Adenine base editing rescues pathogenic phenotypes in tissue engineered vascular model of Hutchinson-Gilford progeria syndrome
Abutaleb NO, Gao XD, Bedapudi A, et al. APL Bioeng. 2025;9(1):016110. Published 2025 Feb 26. doi:10.1063/5.0244026
2024
Aged-vascular niche hinders osteogenesis of mesenchymal stem cells through paracrine repression of Wnt-axis
Fleischhacker V, Milosic F, Bricelj M, et al. Aging Cell. 2024;23(6):e14139. doi:10.1111/acel.14139
Aberrant migration features in primary skin fibroblasts of Huntington’s disease patients hold potential for unraveling disease progression using an image based machine learning tool
Gharaba S, Shalem A, Paz O, Muchtar N, Wolf L, Weil M. Comput Biol Med. 2024;180:108970. doi:10.1016/j.compbiomed.2024.108970
Enhancing Cellular Homeostasis: Targeted Botanical Compounds Boost Cellular Health Functions in Normal and Premature Aging Fibroblasts
Hartinger R, Singh K, Leverett J, Djabali K. Biomolecules. 2024;14(10):1310. Published 2024 Oct 16. doi:10.3390/biom14101310
The NLRP3 inhibitor Dapansutrile improves the therapeutic action of lonafarnib on progeroid mice
Muela-Zarzuela I, Suarez-Rivero JM, Boy-Ruiz D, et al. Aging Cell. 2024;23(9):e14272. doi:10.1111/acel.14272
Progeria-based vascular model identifies networks associated with cardiovascular aging and disease
Ngubo M, Chen Z, McDonald D, et al. Aging Cell. 2024;23(7):e14150. doi:10.1111/acel.14150
Angiopoietin-2 reverses endothelial cell dysfunction in progeria vasculature
Vakili S, Izydore EK, Losert L, et al. Aging Cell. 2025;24(2):e14375. doi:10.1111/acel.14375
Progerin mRNA expression in non-HGPS patients is correlated with widespread shifts in transcript isoforms
Yu R, Xue H, Lin W, Collins FS, Mount SM, Cao K. NAR Genom Bioinform. 2024;6(3):lqae115. Published 2024 Aug 29. doi:10.1093/nargab/lqae115
Coaching ribosome biogenesis from the nuclear periphery
Zhuang Y, Guo X, Razorenova OV, Miles CE, Zhao W, Shi X. Preprint. bioRxiv. 2024;2024.06.21.597078. Published 2024 Jun 22. doi:10.1101/2024.06.21.597078
2023
Lonafarnib and everolimus reduce pathology in iPSC-derived tissue engineered blood vessel model of Hutchinson-Gilford Progeria Syndrome
Abutaleb NO, Atchison L, Choi L, et al. Sci Rep. 2023;13(1):5032. Published 2023 Mar 28. doi:10.1038/s41598-023-32035-3
Aging Model for Analyzing Drug-Induced Proarrhythmia Risks Using Cardiomyocytes Differentiated from Progeria-Patient-Derived Induced Pluripotent Stem Cells
Daily N, Elson J, Wakatsuki T. Int J Mol Sci. 2023;24(15):11959. Published 2023 Jul 26. doi:10.3390/ijms241511959
Ghrelin delays premature aging in Hutchinson-Gilford progeria syndrome
Ferreira-Marques M, Carvalho A, Franco AC, et al. Aging Cell. 2023;22(12):e13983. doi:10.1111/acel.13983
Perturbed actin cap as a new personalized biomarker in primary fibroblasts of Huntington’s disease patients
Gharaba S, Paz O, Feld L, et al. Front Cell Dev Biol. 2023;11:1013721. Published 2023 Jan 18. doi:10.3389/fcell.2023.1013721
Plasma Progerin in Patients With Hutchinson-Gilford Progeria Syndrome: Immunoassay Development and Clinical Evaluation
Gordon LB, Norris W, Hamren S, et al. Circulation. 2023;147(23):1734-1744. doi:10.1161/CIRCULATIONAHA.122.060002
Impact of Combined Baricitinib and FTI Treatment on Adipogenesis in Hutchinson-Gilford Progeria Syndrome and Other Lipodystrophic Laminopathies
Hartinger R, Lederer EM, Schena E, Lattanzi G, Djabali K. Cells. 2023;12(10):1350. Published 2023 May 9. doi:10.3390/cells12101350
Lonafarnib improves cardiovascular function and survival in a mouse model of Hutchinson-Gilford progeria syndrome
Murtada SI, Mikush N, Wang M, et al. Elife. 2023;12:e82728. Published 2023 Mar 17. doi:10.7554/eLife.82728
The farnesyl transferase inhibitor (FTI) lonafarnib improves nuclear morphology in ZMPSTE24-deficient fibroblasts from patients with the progeroid disorder MAD-B
Odinammadu KO, Shilagardi K, Tuminelli K, Judge DP, Gordon LB, Michaelis S. Nucleus. 2023;14(1):2288476. doi:10.1080/19491034.2023.2288476
Hutchinson-Gilford progeria patient-derived cardiomyocyte model of carrying LMNA gene variant c.1824 C > T
Perales S, Sigamani V, Rajasingh S, Czirok A, Rajasingh J. Cell Tissue Res. 2023;394(1):189-207. doi:10.1007/s00441-023-03813-2
Remodeling of the Cardiac Extracellular Matrix Proteome During Chronological and Pathological Aging
Santinha D, Vilaça A, Estronca L, et al. Mol Cell Proteomics. 2024;23(1):100706. doi:10.1016/j.mcpro.2023.100706
Activation of endoplasmic reticulum stress in premature aging via the inner nuclear membrane protein SUN2
Vidak S, Serebryannyy LA, Pegoraro G, Misteli T. Cell Rep. 2023;42(5):112534. doi:10.1016/j.celrep.2023.112534
Unique progerin C-terminal peptide ameliorates Hutchinson-Gilford progeria syndrome phenotype by rescuing BUBR1
Zhang N, Hu Q, Sui T, et al. [published correction appears in Nat Aging. 2023 Jun;3(6):752. doi: 10.1038/s43587-023-00427-9]. Nat Aging. 2023;3(2):185-201. doi:10.1038/s43587-023-00361-w
Senotherapeutic peptide treatment reduces biological age and senescence burden in human skin models
Zonari A, Brace LE, Al-Katib K, et al. [published correction appears in NPJ Aging. 2024 Feb 15;10(1):14. doi: 10.1038/s41514-024-00140-w]. NPJ Aging. 2023;9(1):10. Published 2023 May 22. doi:10.1038/s41514-023-00109-1
2022
Quantification of Farnesylated Progerin in Hutchinson-Gilford Progeria Patient Cells by Mass Spectrometry
Camafeita E, Jorge I, Rivera-Torres J, Andrés V, Vázquez J. Int J Mol Sci. 2022;23(19):11733. Published 2022 Oct 3. doi:10.3390/ijms231911733
SerpinE1 drives a cell-autonomous pathogenic signaling in Hutchinson-Gilford progeria syndrome
Catarinella G, Nicoletti C, Bracaglia A, et al. Cell Death Dis. 2022;13(8):737. Published 2022 Aug 26. doi:10.1038/s41419-022-05168-y
Clonal hematopoiesis is not prevalent in Hutchinson-Gilford progeria syndrome
Díez-Díez M, Amorós-Pérez M, de la Barrera J, et al. Geroscience. 2023;45(2):1231-1236. doi:10.1007/s11357-022-00607-2
MG132 Induces Progerin Clearance and Improves Disease Phenotypes in HGPS-like Patients’ Cells
Harhouri K, Cau P, Casey F, et al. Cells. 2022;11(4):610. Published 2022 Feb 10. doi:10.3390/cells11040610
Anti-hsa-miR-59 alleviates premature senescence associated with Hutchinson-Gilford progeria syndrome in mice
Hu Q, Zhang N, Sui T, et al. EMBO J. 2023;42(1):e110937. doi:10.15252/embj.2022110937
Combined alteration of lamin and nuclear morphology influences the localization of the tumor-associated factor AKTIP
La Torre M, Merigliano C, Maccaroni K, et al. J Exp Clin Cancer Res. 2022;41(1):273. Published 2022 Sep 13. doi:10.1186/s13046-022-02480-5
Establishment and Characterization of hTERT Immortalized Hutchinson-Gilford Progeria Fibroblast Cell Lines
Lin H, Mensch J, Haschke M, et al. Cells. 2022;11(18):2784. Published 2022 Sep 6. doi:10.3390/cells11182784
Impaired LEF1 Activation Accelerates iPSC-Derived Keratinocytes Differentiation in Hutchinson-Gilford Progeria Syndrome
Mao X, Xiong ZM, Xue H, et al. Int J Mol Sci. 2022;23(10):5499. Published 2022 May 14. doi:10.3390/ijms23105499
Modelling premature cardiac aging with induced pluripotent stem cells from a hutchinson-gilford Progeria Syndrome patient
Monnerat G, Kasai-Brunswick TH, Asensi KD, et al. Front Physiol. 2022;13:1007418. Published 2022 Nov 23. doi:10.3389/fphys.2022.1007418
Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate
Pfeifer CR, Tobin MP, Cho S, et al. Nucleus. 2022;13(1):129-143. doi:10.1080/19491034.2022.2045726
Transcriptional profiling of Hutchinson-Gilford Progeria syndrome fibroblasts reveals deficits in mesenchymal stem cell commitment to differentiation related to early events in endochondral ossification
San Martin R, Das P, Sanders JT, Hill AM, McCord RP. Elife. 2022;11:e81290. Published 2022 Dec 29. doi:10.7554/eLife.81290
Impact of MnTBAP and Baricitinib Treatment on Hutchinson-Gilford Progeria Fibroblasts
Vehns E, Arnold R, Djabali K. Pharmaceuticals (Basel). 2022;15(8):945. Published 2022 Jul 29. doi:10.3390/ph15080945
Achieving single nucleotide sensitivity in direct hybridization genome imaging
Wang Y, Cottle WT, Wang H, et al. Nat Commun. 2022;13(1):7776. Published 2022 Dec 15. doi:10.1038/s41467-022-35476-y
Vascular senescence in progeria: role of endothelial dysfunction
Xu Q, Mojiri A, Boulahouache L, Morales E, Walther BK, Cooke JP. Vascular senescence in progeria: role of endothelial dysfunction. Eur Heart J Open. 2022;2(4):oeac047. Published 2022 Jul 28. doi:10.1093/ehjopen/oeac047
2021
Baricitinib, a JAK-STAT Inhibitor, Reduces the Cellular Toxicity of the Farnesyltransferase Inhibitor Lonafarnib in Progeria Cells
Arnold R, Vehns E, Randl H, Djabali K. Int J Mol Sci. 2021;22(14):7474. Published 2021 Jul 12. doi:10.3390/ijms22147474
A targeted antisense therapeutic approach for Hutchinson-Gilford progeria syndrome
Erdos MR, Cabral WA, Tavarez UL, et al. Nat Med. 2021;27(3):536-545. doi:10.1038/s41591-021-01274-0
Self-assembly of multi-component mitochondrial nucleoids via phase separation
Feric M, Demarest TG, Tian J, Croteau DL, Bohr VA, Misteli T. EMBO J. 2021;40(6):e107165. doi:10.15252/embj.2020107165
Mechanisms of angiogenic incompetence in Hutchinson-Gilford progeria via downregulation of endothelial NOS
Gete YG, Koblan LW, Mao X, et al. Aging Cell. 2021;20(7):e13388. doi:10.1111/acel.13388
Inhibition of the NLRP3 inflammasome improves lifespan in animal murine model of Hutchinson-Gilford Progeria
González-Dominguez A, Montañez R, Castejón-Vega B, et al. EMBO Mol Med. 2021;13(10):e14012. doi:10.15252/emmm.202114012
Progerinin, an optimized progerin-lamin A binding inhibitor, ameliorates premature senescence phenotypes of Hutchinson-Gilford progeria syndrome
Kang SM, Yoon MH, Ahn J, et al. [published correction appears in Commun Biol. 2021 Mar 2;4(1):297. doi: 10.1038/s42003-021-01843-6.]. Commun Biol. 2021;4(1):5. Published 2021 Jan 4. doi:10.1038/s42003-020-01540-w
In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice
Koblan LW, Erdos MR, Wilson C, et al. Nature. 2021;589(7843):608-614. doi:10.1038/s41586-020-03086-7
Isoprenylcysteine Carboxylmethyltransferase-Based Therapy for Hutchinson-Gilford Progeria Syndrome
Marcos-Ramiro B, Gil-Ordóñez A, Marín-Ramos NI, et al. ACS Cent Sci. 2021;7(8):1300-1310. doi:10.1021/acscentsci.0c01698
Telomerase therapy reverses vascular senescence and extends lifespan in progeria mice
Mojiri A, Walther BK, Jiang C, et al. Eur Heart J. 2021;42(42):4352-4369. doi:10.1093/eurheartj/ehab547
Impact of Progerin Expression on Adipogenesis in Hutchinson-Gilford Progeria Skin-Derived Precursor Cells
Najdi F, Krüger P, Djabali K. Cells. 2021;10(7):1598. Published 2021 Jun 25. doi:10.3390/cells10071598
Systematic screening identifies therapeutic antisense oligonucleotides for Hutchinson-Gilford progeria syndrome
Puttaraju M, Jackson M, Klein S, et al. [published correction appears in Nat Med. 2021 Jul;27(7):1309. doi: 10.1038/s41591-021-01415-5.]. Nat Med. 2021;27(3):526-535. doi:10.1038/s41591-021-01262-4
Nuclear Pore Complexes Cluster in Dysmorphic Nuclei of Normal and Progeria Cells during Replicative Senescence
Röhrl JM, Arnold R, Djabali K. Cells. 2021;10(1):153. Published 2021 Jan 14. doi:10.3390/cells10010153
2020
iPSC-Derived Endothelial Cells Affect Vascular Function in a Tissue-Engineered Blood Vessel Model of Hutchinson-Gilford Progeria Syndrome
Atchison L, Abutaleb NO, Snyder-Mounts E, et al. Stem Cell Reports. 2020;14(2):325-337. doi:10.1016/j.stemcr.2020.01.005
Direct reprogramming of human smooth muscle and vascular endothelial cells reveals defects associated with aging and Hutchinson-Gilford progeria syndrome
Bersini S, Schulte R, Huang L, Tsai H, Hetzer MW. Elife. 2020;9:e54383. Published 2020 Sep 8. doi:10.7554/eLife.54383
Phosphorylated Lamin A/C in the Nuclear Interior Binds Active Enhancers Associated with Abnormal Transcription in Progeria
Ikegami K, Secchia S, Almakki O, Lieb JD, Moskowitz IP. Dev Cell. 2020;52(6):699-713.e11. doi:10.1016/j.devcel.2020.02.011
Epigenetic deregulation of lamina-associated domains in Hutchinson-Gilford progeria syndrome
Köhler F, Bormann F, Raddatz G, et al. Genome Med. 2020;12(1):46. Published 2020 May 25. doi:10.1186/s13073-020-00749-y
Chromatin and Cytoskeletal Tethering Determine Nuclear Morphology in Progerin-Expressing Cells
Lionetti MC, Bonfanti S, Fumagalli MR, et al. Biophys J. 2020;118(9):2319-2332. doi:10.1016/j.bpj.2020.04.001
Peroxisomal abnormalities and catalase deficiency in Hutchinson-Gilford Progeria Syndrome
Mao X, Bharti P, Thaivalappil A, Cao K. Aging (Albany NY). 2020;12(6):5195-5208. doi:10.18632/aging.102941
SAMMY-seq reveals early alteration of heterochromatin and deregulation of bivalent genes in Hutchinson-Gilford Progeria Syndrome
Sebestyén E, Marullo F, Lucini F, et al. Nat Commun. 2020;11(1):6274. Published 2020 Dec 8. doi:10.1038/s41467-020-20048-9
PML2-mediated thread-like nuclear bodies mark late senescence in Hutchinson-Gilford progeria syndrome
Wang M, Wang L, Qian M, et al. Aging Cell. 2020;19(6):e13147. doi:10.1111/acel.13147
Targeting RAS-converting enzyme 1 overcomes senescence and improves progeria-like phenotypes of ZMPSTE24 deficiency
Yao H, Chen X, Kashif M, et al. Aging Cell. 2020;19(8):e13200. doi:10.1111/acel.13200
2019
Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging
Chang W, Wang Y, Luxton GWG, Östlund C, Worman HJ, Gundersen GG. Proc Natl Acad Sci U S A. 2019;116(9):3578-3583. doi:10.1073/pnas.1809683116
Transient introduction of human telomerase mRNA improves hallmarks of progeria cells
Li Y, Zhou G, Bruno IG, et al. Aging Cell. 2019;18(4):e12979. doi:10.1111/acel.12979
Inhibition of JAK-STAT Signaling with Baricitinib Reduces Inflammation and Improves Cellular Homeostasis in Progeria Cells
Liu C, Arnold R, Henriques G, Djabali K. Cells. 2019;8(10):1276. Published 2019 Oct 18. doi:10.3390/cells8101276
Dysfunction of iPSC-derived endothelial cells in human Hutchinson-Gilford progeria syndrome
Matrone G, Thandavarayan RA, Walther BK, Meng S, Mojiri A, Cooke JP. Cell Cycle. 2019;18(19):2495-2508. doi:10.1080/15384101.2019.1651587
Metabolomic profiling suggests systemic signatures of premature aging induced by Hutchinson-Gilford progeria syndrome
Monnerat G, Evaristo GPC, Evaristo JAM, et al. Metabolomics. 2019;15(7):100. Published 2019 Jun 28. doi:10.1007/s11306-019-1558-6
Analysis of somatic mutations identifies signs of selection during in vitro aging of primary dermal fibroblasts
Narisu N, Rothwell R, Vrtačnik P, et al. Aging Cell. 2019;18(6):e13010. doi:10.1111/acel.13010
Restoring extracellular matrix synthesis in senescent stem cells
Rong N, Mistriotis P, Wang X, et al. FASEB J. 2019;33(10):10954-10965. doi:10.1096/fj.201900377R
2018
Smurf2 regulates stability and the autophagic-lysosomal turnover of lamin A and its disease-associated form progerin
Borroni AP, Emanuelli A, Shah PA, et al. Aging Cell. 2018;17(2):e12732. doi:10.1111/acel.12732
Progerin phosphorylation in interphase is lower and less mechanosensitive than lamin-A,C in iPS-derived mesenchymal stem cells
Cho S, Abbas A, Irianto J, et al. Nucleus. 2018;9(1):230-245. doi:10.1080/19491034.2018.1460185
Diminished Canonical β-Catenin Signaling During Osteoblast Differentiation Contributes to Osteopenia in Progeria
Choi JY, Lai JK, Xiong ZM, et al. J Bone Miner Res. 2018;33(11):2059-2070. doi:10.1002/jbmr.3549
Everolimus rescues multiple cellular defects in laminopathy-patient fibroblasts
DuBose AJ, Lichtenstein ST, Petrash NM, Erdos MR, Gordon LB, Collins FS. [published correction appears in Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):E4140. doi: 10.1073/pnas.1805694115.]. Proc Natl Acad Sci U S A. 2018;115(16):4206-4211. doi:10.1073/pnas.1802811115
Predicting age from the transcriptome of human dermal fibroblasts
Fleischer JG, Schulte R, Tsai HH, et al. Genome Biol. 2018;19(1):221. Published 2018 Dec 20. doi:10.1186/s13059-018-1599-6
Targeting the phospholipase A2 receptor ameliorates premature aging phenotypes
Griveau A, Wiel C, Le Calvé B, et al. Aging Cell. 2018;17(6):e12835. doi:10.1111/acel.12835
Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies
Horvath S, Oshima J, Martin GM, et al. Aging (Albany NY). 2018;10(7):1758-1775. doi:10.18632/aging.101508
A Cell-Intrinsic Interferon-like Response Links Replication Stress to Cellular Aging Caused by Progerin
Kreienkamp R, Graziano S, Coll-Bonfill N, et al. Cell Rep. 2018;22(8):2006-2015. doi:10.1016/j.celrep.2018.01.090
Analyses of LMNA-negative juvenile progeroid cases confirms biallelic POLR3A mutations in Wiedemann-Rautenstrauch-like syndrome and expands the phenotypic spectrum of PYCR1 mutations
Lessel D, Ozel AB, Campbell SE, et al. Hum Genet. 2018;137(11-12):921-939. doi:10.1007/s00439-018-1957-1
Autophagic Removal of Farnesylated Carboxy-Terminal Lamin Peptides
Lu X, Djabali K. Cells. 2018;7(4):33. Published 2018 Apr 23. doi:10.3390/cells7040033
p53 isoforms regulate premature aging in human cells
von Muhlinen N, Horikawa I, Alam F, et al. Oncogene. 2018;37(18):2379-2393. doi:10.1038/s41388-017-0101-3
2017
SIRPA-Inhibited, Marrow-Derived Macrophages Engorge, Accumulate, and Differentiate in Antibody-Targeted Regression of Solid Tumors
Alvey CM, Spinler KR, Irianto J, et al. Curr Biol. 2017;27(14):2065-2077.e6. doi:10.1016/j.cub.2017.06.005
Nucleolar expansion and elevated protein translation in premature aging
Buchwalter A, Hetzer MW. Nat Commun. 2017;8(1):328. Published 2017 Aug 30. doi:10.1038/s41467-017-00322-z
Reprogramming progeria fibroblasts re-establishes a normal epigenetic landscape
Chen Z, Chang WY, Etheridge A, et al. Aging Cell. 2017;16(4):870-887. doi:10.1111/acel.12621
Intermittent treatment with farnesyltransferase inhibitor and sulforaphane improves cellular homeostasis in Hutchinson-Gilford progeria fibroblasts
Gabriel D, Shafry DD, Gordon LB, Djabali K. Oncotarget. 2017;8(39):64809-64826. Published 2017 Jul 18. doi:10.18632/oncotarget.19363
Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes
Hilton BA, Liu J, Cartwright BM, et al. FASEB J. 2017;31(9):3882-3893. doi:10.1096/fj.201700014R
Cross-linked matrix rigidity and soluble retinoids synergize in nuclear lamina regulation of stem cell differentiation
Ivanovska IL, Swift J, Spinler K, Dingal D, Cho S, Discher DE. Mol Biol Cell. 2017;28(14):2010-2022. doi:10.1091/mbc.E17-01-0010
Identification of novel PDEδ interacting proteins
Küchler P, Zimmermann G, Winzker M, Janning P, Waldmann H, Ziegler S. Bioorg Med Chem. 2018;26(8):1426-1434. doi:10.1016/j.bmc.2017.08.033
Telomerase mRNA Reverses Senescence in Progeria Cells
Li Y, Zhou G, Bruno IG, Cooke JP. J Am Coll Cardiol. 2017;70(6):804-805. doi:10.1016/j.jacc.2017.06.017
Metformin alleviates ageing cellular phenotypes in Hutchinson-Gilford progeria syndrome dermal fibroblasts
Park SK, Shin OS. Exp Dermatol. 2017;26(10):889-895. doi:10.1111/exd.13323
Nucleoplasmic lamins define growth-regulating functions of lamina-associated polypeptide 2α in progeria cells
Vidak S, Georgiou K, Fichtinger P, Naetar N, Dechat T, Foisner R. J Cell Sci. 2018;131(3):jcs208462. Published 2018 Feb 8. doi:10.1242/jcs.208462
2016
A novel somatic mutation achieves partial rescue in a child with Hutchinson-Gilford progeria syndrome
Bar DZ, Arlt MF, Brazier JF, et al. J Med Genet. 2017;54(3):212-216. doi:10.1136/jmedgenet-2016-104295
Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson-Gilford progeria fibroblasts
Eisch V, Lu X, Gabriel D, Djabali K. Oncotarget. 2016;7(17):24700-24718. doi:10.18632/oncotarget.8267
Temsirolimus Partially Rescues the Hutchinson-Gilford Progeria Cellular Phenotype
Gabriel D, Gordon LB, Djabali K. PLoS One. 2016;11(12):e0168988. Published 2016 Dec 29. doi:10.1371/journal.pone.0168988
Vitamin D receptor signaling improves Hutchinson-Gilford progeria syndrome cellular phenotypes
Kreienkamp R, Croke M, Neumann MA, et al. Oncotarget. 2016;7(21):30018-30031. doi:10.18632/oncotarget.9065
NANOG Reverses the Myogenic Differentiation Potential of Senescent Stem Cells by Restoring ACTIN Filamentous Organization and SRF-Dependent Gene Expression
Mistriotis P, Bajpai VK, Wang X, et al. Stem Cells. 2017;35(1):207-221. doi:10.1002/stem.2452
Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase
Moiseeva O, Lopes-Paciencia S, Huot G, Lessard F, Ferbeyre G. Aging (Albany NY). 2016;8(2):366-381. doi:10.18632/aging.100903
A mutation abolishing the ZMPSTE24 cleavage site in prelamin A causes a progeroid disorder
Wang Y, Lichter-Konecki U, Anyane-Yeboa K, et al. J Cell Sci. 2016;129(10):1975-1980. doi:10.1242/jcs.187302
Comparing lamin proteins post-translational relative stability using a 2A peptide-based system reveals elevated resistance of progerin to cellular degradation
Wu D, Yates PA, Zhang H, Cao K. Nucleus. 2016;7(6):585-596.
doi:10.1080/19491034.2016.1260803
Loss of H3K9me3 Correlates with ATM Activation and Histone H2AX Phosphorylation Deficiencies in Hutchinson-Gilford Progeria Syndrome
Zhang H, Sun L, Wang K, et al. PLoS One. 2016;11(12):e0167454. Published 2016 Dec 1. doi:10.1371/journal.pone.0167454
2015
Nuclear stiffening and chromatin softening with progerin expression leads to an attenuated nuclear response to force
Booth EA, Spagnol ST, Alcoser TA, Dahl KN. Soft Matter. 2015;11(32):6412-6418. doi:10.1039/c5sm00521c
Lamin A Is an Endogenous SIRT6 Activator and Promotes SIRT6-Mediated DNA Repair
Ghosh S, Liu B, Wang Y, Hao Q, Zhou Z. Cell Rep. 2015;13(7):1396-1406. doi:10.1016/j.celrep.2015.10.006
Insights into the role of immunosenescence during varicella zoster virus infection (shingles) in the aging cell model
Kim JA, Park SK, Kumar M, Lee CH, Shin OS. Oncotarget. 2015;6(34):35324-35343. doi:10.18632/oncotarget.6117
Proliferation of progeria cells is enhanced by lamina-associated polypeptide 2α (LAP2α) through expression of extracellular matrix proteins
Vidak S, Kubben N, Dechat T, Foisner R. Genes Dev. 2015;29(19):2022-2036. doi:10.1101/gad.263939.115
Phenotype-Dependent Coexpression Gene Clusters: Application to Normal and Premature Ageing
Wang K, Das A, Xiong ZM, Cao K, Hannenhalli S. IEEE/ACM Trans Comput Biol Bioinform. 2015;12(1):30-39. doi:10.1109/TCBB.2014.2359446
Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria
Xiong ZM, Choi JY, Wang K, et al. Aging Cell. 2016;15(2):279-290. doi:10.1111/acel.12434
2014
Sulforaphane enhances progerin clearance in Hutchinson-Gilford progeria fibroblasts
Gabriel D, Roedl D, Gordon LB, Djabali K. Aging Cell. 2015;14(1):78-91. doi:10.1111/acel.12300
Zhang H, Xiong ZM, Cao K. Proc Natl Acad Sci U S A. 2014;111(22):E2261-E2270. doi:10.1073/pnas.1320843111
2013
Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model
Liu B, Wang Z, Zhang L, Ghosh S, Zheng H, Zhou Z. Nat Commun. 2013;4:1868. doi:10.1038/ncomms2885
Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome
McCord RP, Nazario-Toole A, Zhang H, et al. Genome Res. 2013;23(2):260-269. doi:10.1101/gr.138032.112
Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence
Swanson EC, Manning B, Zhang H, Lawrence JB. J Cell Biol. 2013;203(6):929-942. doi:10.1083/jcb.201306073
An inhibitory role of progerin in the gene induction network of adipocyte differentiation from iPS cells
Xiong ZM, LaDana C, Wu D, Cao K. Aging (Albany NY). 2013;5(4):288-303. doi:10.18632/aging.100550
2012
Automated image analysis of nuclear shape: what can we learn from a prematurely aged cell?
Driscoll MK, Albanese JL, Xiong ZM, Mailman M, Losert W, Cao K. Aging (Albany NY). 2012;4(2):119-132. doi:10.18632/aging.100434
Progeria: translational insights from cell biology
Gordon LB, Cao K, Collins FS. J Cell Biol. 2012;199(1):9-13. doi:10.1083/jcb.201207072
A proteomic study of Hutchinson-Gilford progeria syndrome: Application of 2D-chromotography in a premature aging disease
Wang L, Yang W, Ju W, et al. Biochem Biophys Res Commun. 2012;417(4):1119-1126. doi:10.1016/j.bbrc.2011.12.056
Naïve adult stem cells from patients with Hutchinson-Gilford progeria syndrome express low levels of progerin in vivo
Wenzel V, Roedl D, Gabriel D, et al. Biol Open. 2012;1(6):516-526. doi:10.1242/bio.20121149
2011
Comparison of constitutional and replication stress-induced genome structural variation by SNP array and mate-pair sequencing
Arlt MF, Ozdemir AC, Birkeland SR, Lyons RH Jr, Glover TW, Wilson TE. Genetics. 2011;187(3):675-683. doi:10.1534/genetics.110.124776
Hydroxyurea induces de novo copy number variants in human cells
Arlt MF, Ozdemir AC, Birkeland SR, Wilson TE, Glover TW. Proc Natl Acad Sci U S A. 2011;108(42):17360-17365. doi:10.1073/pnas.1109272108
Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts
Cao K, Blair CD, Faddah DA, et al. J Clin Invest. 2011;121(7):2833-2844. doi:10.1172/JCI43578
Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells
Cao K, Graziotto JJ, Blair CD, et al. Sci Transl Med. 2011;3(89):89ra58. doi:10.1126/scitranslmed.3002346
Computational image analysis of nuclear morphology associated with various nuclear-specific aging disorders
Choi S, Wang W, Ribeiro AJ, et al. Nucleus. 2011;2(6):570-579. doi:10.4161/nucl.2.6.17798
CTP: phosphocholine cytidylyltransferase α (CCTα) and lamins alter nuclear membrane structure without affecting phosphatidylcholine synthesis
Gehrig K, Ridgway ND. Biochim Biophys Acta. 2011;1811(6):377-385. doi:10.1016/j.bbalip.2011.04.001
Age-dependent loss of MMP-3 in Hutchinson-Gilford progeria syndrome
Harten IA, Zahr RS, Lemire JM, et al. J Gerontol A Biol Sci Med Sci. 2011;66(11):1201-1207. doi:10.1093/gerona/glr137
Low and high expressing alleles of the LMNA gene: implications for laminopathy disease development
Rodríguez S, Eriksson M. PLoS One. 2011;6(9):e25472. doi:10.1371/journal.pone.0025472
Stem cell depletion in Hutchinson-Gilford progeria syndrome
Rosengardten Y, McKenna T, Grochová D, Eriksson M. Aging Cell. 2011;10(6):1011-1020. doi:10.1111/j.1474-9726.2011.00743.x
2010
Defective lamin A-Rb signaling in Hutchinson-Gilford Progeria Syndrome and reversal by farnesyltransferase inhibition
Marji J, O’Donoghue SI, McClintock D, et al. PLoS One. 2010;5(6):e11132. Published 2010 Jun 15. doi:10.1371/journal.pone.0011132
Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging
Olive M, Harten I, Mitchell R, et al. Arterioscler Thromb Vasc Biol. 2010;30(11):2301-2309. doi:10.1161/ATVBAHA.110.209460
Effect of progerin on the accumulation of oxidized proteins in fibroblasts from Hutchinson Gilford progeria patients
Viteri G, Chung YW, Stadtman ER. Mech Ageing Dev. 2010;131(1):2-8. doi:10.1016/j.mad.2009.11.006
2009
Replication stress induces genome-wide copy number changes in human cells that resemble polymorphic and pathogenic variants
Arlt MF, Mulle JG, Schaibley VM, et al. Am J Hum Genet. 2009;84(3):339-350. doi:10.1016/j.ajhg.2009.01.024
Ageing-related chromatin defects through loss of the NURD complex
Pegoraro G, Kubben N, Wickert U, Göhler H, Hoffmann K, Misteli T. Nat Cell Biol. 2009;11(10):1261-1267. doi:10.1038/ncb1971
2008
Perturbation of wild-type lamin A metabolism results in a progeroid phenotype
Candelario J, Sudhakar S, Navarro S, Reddy S, Comai L. Aging Cell. 2008;7(3):355-367. doi:10.1111/j.1474-9726.2008.00393.x
Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing
Scaffidi P, Misteli T. Nat Cell Biol. 2008;10(4):452-459. doi:10.1038/ncb1708
Increased mechanosensitivity and nuclear stiffness in Hutchinson-Gilford progeria cells: effects of farnesyltransferase inhibitors
Verstraeten VL, Ji JY, Cummings KS, Lee RT, Lammerding J. Aging Cell. 2008;7(3):383-393. doi:10.1111/j.1474-9726.2008.00382.x
2007
A lamin A protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells
Cao K, Capell BC, Erdos MR, Djabali K, Collins FS. Proc Natl Acad Sci U S A. 2007;104(12):4949-4954. doi:10.1073/pnas.0611640104
Alterations in mitosis and cell cycle progression caused by a mutant lamin A known to accelerate human aging
Dechat T, Shimi T, Adam SA, et al. Proc Natl Acad Sci U S A. 2007;104(12):4955-4960. doi:10.1073/pnas.0700854104
Prelamin A processing and heterochromatin dynamics in laminopathies
Maraldi NM, Mattioli E, Lattanzi G, et al. Adv Enzyme Regul. 2007;47:154-167. doi:10.1016/j.advenzreg.2006.12.016
The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin
McClintock D, Ratner D, Lokuge M, et al. PLoS One. 2007;2(12):e1269. Published 2007 Dec 5. doi:10.1371/journal.pone.0001269
Increased progerin expression associated with unusual LMNA mutations causes severe progeroid syndromes
Moulson CL, Fong LG, Gardner JM, et al. Hum Mutat. 2007;28(9):882-889. doi:10.1002/humu.20536
2006
Aggrecan expression is substantially and abnormally upregulated in Hutchinson-Gilford Progeria Syndrome dermal fibroblasts
Lemire JM, Patis C, Gordon LB, Sandy JD, Toole BP, Weiss AS. Mech Ageing Dev. 2006;127(8):660-669. doi:10.1016/j.mad.2006.03.004
Hutchinson-Gilford progeria mutant lamin A primarily targets human vascular cells as detected by an anti-Lamin A G608G antibody
McClintock D, Gordon LB, Djabali K. Proc Natl Acad Sci U S A. 2006;103(7):2154-2159. doi:10.1073/pnas.0511133103
2005
Rescue of heterochromatin organization in Hutchinson-Gilford progeria by drug treatment
Columbaro M, Capanni C, Mattioli E, et al. Cell Mol Life Sci. 2005;62(22):2669-2678. doi:10.1007/s00018-005-5318-6
Incomplete processing of mutant lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition
Glynn MW, Glover TW. Hum Mol Genet. 2005;14(20):2959-2969. doi:10.1093/hmg/ddi326
Genomic instability in laminopathy-based premature aging
Liu B, Wang J, Chan KM, et al. Nat Med. 2005;11(7):780-785. doi:10.1038/nm1266
Novel progerin-interactive partner proteins hnRNP E1, EGF, Mel 18, and UBC9 interact with lamin A/C
Zhong N, Radu G, Ju W, Brown WT. Biochem Biophys Res Commun. 2005;338(2):855-861. doi:10.1016/j.bbrc.2005.10.020
2004
Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome
Goldman RD, Shumaker DK, Erdos MR, et al. Proc Natl Acad Sci U S A. 2004;101(24):8963-8968. doi:10.1073/pnas.0402943101
2003
Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome
Eriksson M, Brown WT, Gordon LB, et al. Nature. 2003;423(6937):293-298. doi:10.1038/nature01629
PRF International Medical and Research Database for Progeria
Publications Utilizing Data from
The Progeria Research Foundation International Medical and Research Database
2025
Hutchinson-Gilford Progeria Syndrome
Gordon LB, Brown WT, Collins FS. 2003 Dec 12 [Updated 2025 Mar 13]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025.
2024
Intervention for critical aortic stenosis in Hutchinson-Gilford progeria syndrome
Gordon LB, Basso S, Maestranzi J, et al. Front Cardiovasc Med. 2024;11:1356010. Published 2024 Apr 25. doi:10.3389/fcvm.2024.1356010
2023
Plasma Progerin in Patients With Hutchinson-Gilford Progeria Syndrome: Immunoassay Development and Clinical Evaluation
Gordon LB, Norris W, Hamren S, et al. Circulation. 2023;147(23):1734-1744. doi:10.1161/CIRCULATIONAHA.122.060002
The farnesyl transferase inhibitor (FTI) lonafarnib improves nuclear morphology in ZMPSTE24-deficient fibroblasts from patients with the progeroid disorder MAD-B
Odinammadu KO, Shilagardi K, Tuminelli K, Judge DP, Gordon LB, Michaelis S. Nucleus. 2023;14(1):2288476. doi:10.1080/19491034.2023.2288476
2022
Clonal hematopoiesis is not prevalent in Hutchinson-Gilford progeria syndrome
Díez-Díez M, Amorós-Pérez M, de la Barrera J, et al. Geroscience. 2023;45(2):1231-1236. doi:10.1007/s11357-022-00607-2
Sample size determination for the association between longitudinal and time-to-event outcomes using the joint modeling time-dependent slopes parameterization
LeClair J, Massaro J, Sverdlov O, Gordon L, Tripodis Y. Stat Med. 2022;41(30):5810-5829. doi:10.1002/sim.9595
2021
A novel homozygous synonymous variant further expands the phenotypic spectrum of POLR3A-related pathologies
Lessel D, Rading K, Campbell SE, et al. Am J Med Genet A. 2022;188(1):216-223. doi:10.1002/ajmg.a.62525
2018
Everolimus rescues multiple cellular defects in laminopathy-patient fibroblasts
DuBose AJ, Lichtenstein ST, Petrash NM, Erdos MR, Gordon LB, Collins FS. [published correction appears in Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):E4140. doi: 10.1073/pnas.1805694115]. Proc Natl Acad Sci U S A. 2018;115(16):4206-4211. doi:10.1073/pnas.1802811115
Association of Lonafarnib Treatment vs No Treatment With Mortality Rate in Patients With Hutchinson-Gilford Progeria Syndrome
Gordon LB, Shappell H, Massaro J, et al. JAMA. 2018;319(16):1687-1695. doi:10.1001/jama.2018.3264
Analyses of LMNA-negative juvenile progeroid cases confirms biallelic POLR3A mutations in Wiedemann-Rautenstrauch-like syndrome and expands the phenotypic spectrum of PYCR1 mutations
Lessel D, Ozel AB, Campbell SE, et al. Hum Genet. 2018;137(11-12):921-939. doi:10.1007/s00439-018-1957-1
2017
Ophthalmologic Features of Progeria
Mantagos IS, Kleinman ME, Kieran MW, Gordon LB. Am J Ophthalmol. 2017;182:126-132. doi:10.1016/j.ajo.2017.07.020
2016
A novel somatic mutation achieves partial rescue in a child with Hutchinson-Gilford progeria syndrome
Bar DZ, Arlt MF, Brazier JF, et al. J Med Genet. 2017;54(3):212-216. doi:10.1136/jmedgenet-2016-104295
Clinical Trial of the Protein Farnesylation Inhibitors Lonafarnib, Pravastatin, and Zoledronic Acid in Children With Hutchinson-Gilford Progeria Syndrome
Gordon LB, Kleinman ME, Massaro J, et al. Circulation. 2016;134(2):114-125. doi:10.1161/CIRCULATIONAHA.116.022188
Cardiac electrical defects in progeroid mice and Hutchinson-Gilford progeria syndrome patients with nuclear lamina alterations
Rivera-Torres J, Calvo CJ, Llach A, et al. Proc Natl Acad Sci U S A. 2016;113(46):E7250-E7259. doi:10.1073/pnas.1603754113
2015
Hutchinson-Gilford progeria syndrome
Ullrich NJ, Gordon LB. Handb Clin Neurol. 2015;132:249-264. doi:10.1016/B978-0-444-62702-5.00018-4
2014
Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome
Gordon LB, Massaro J, D’Agostino RB Sr, et al. Circulation. 2014;130(1):27-34. doi:10.1161/CIRCULATIONAHA.113.008285
Initial cutaneous manifestations of Hutchinson-Gilford progeria syndrome
Rork JF, Huang JT, Gordon LB, Kleinman M, Kieran MW, Liang MG. Pediatr Dermatol. 2014;31(2):196-202. doi:10.1111/pde.12284
2013
Imaging characteristics of cerebrovascular arteriopathy and stroke in Hutchinson-Gilford progeria syndrome
Silvera VM, Gordon LB, Orbach DB, Campbell SE, Machan JT, Ullrich NJ. AJNR Am J Neuroradiol. 2013;34(5):1091-1097. doi:10.3174/ajnr.A3341
Neurologic features of Hutchinson-Gilford progeria syndrome after lonafarnib treatment
Ullrich NJ, Kieran MW, Miller DT, et al. Neurology. 2013;81(5):427-430. doi:10.1212/WNL.0b013e31829d85c0
2012
Mechanisms of premature vascular aging in children with Hutchinson-Gilford progeria syndrome
Gerhard-Herman M, Smoot LB, Wake N, et al. Hypertension. 2012;59(1):92-97. doi:10.1161/HYPERTENSIONAHA.111.180919
Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome
Gordon LB, Kleinman ME, Miller DT, et al. Proc Natl Acad Sci U S A. 2012;109(41):16666-16671. doi:10.1073/pnas.1202529109
Craniofacial abnormalities in Hutchinson-Gilford progeria syndrome
Ullrich NJ, Silvera VM, Campbell SE, Gordon LB. AJNR Am J Neuroradiol. 2012;33(8):1512-1518. doi:10.3174/ajnr.A3088
A prospective study of radiographic manifestations in Hutchinson-Gilford progeria syndrome
Cleveland RH, Gordon LB, Kleinman ME, et al. Pediatr Radiol. 2012;42(9):1089-1098. doi:10.1007/s00247-012-2423-1
Progeria: translational insights from cell biology
Gordon LB, Cao K, Collins FS. J Cell Biol. 2012;199(1):9-13. doi:10.1083/jcb.201207072
2011
Hutchinson-Gilford progeria is a skeletal dysplasia
Gordon CM, Gordon LB, Snyder BD, et al. J Bone Miner Res. 2011;26(7):1670-1679. doi:10.1002/jbmr.392
Low and high expressing alleles of the LMNA gene: implications for laminopathy disease development
Rodríguez S, Eriksson M. PLoS One. 2011;6(9):e25472. doi:10.1371/journal.pone.0025472
2010
Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging
Olive M, Harten I, Mitchell R, et al. Arterioscler Thromb Vasc Biol. 2010;30(11):2301-2309. doi:10.1161/ATVBAHA.110.209460
2008
Reversible phenotype in a mouse model of Hutchinson-Gilford progeria syndrome
Sagelius H, Rosengardten Y, Schmidt E, Sonnabend C, Rozell B, Eriksson M. J Med Genet. 2008;45(12):794-801. doi:10.1136/jmg.2008.060772
Targeted transgenic expression of the mutation causing Hutchinson-Gilford progeria syndrome leads to proliferative and degenerative epidermal disease
Sagelius H, Rosengardten Y, Hanif M, et al. J Cell Sci. 2008;121(Pt 7):969-978. doi:10.1242/jcs.022913
Phenotype and course of Hutchinson-Gilford progeria syndrome
Merideth MA, Gordon LB, Clauss S, et al. N Engl J Med. 2008;358(6):592-604. doi:10.1056/NEJMoa0706898
2007
Disease progression in Hutchinson-Gilford progeria syndrome: impact on growth and development
Gordon LB, McCarten KM, Giobbie-Hurder A, et al. Pediatrics. 2007;120(4):824-833. doi:10.1542/peds.2007-1357
New approaches to progeria
Kieran MW, Gordon L, Kleinman M. [published correction appears in Pediatrics. 2007 Dec;120(6):1405]. Pediatrics. 2007;120(4):834-841. doi:10.1542/peds.2007-1356
2005
Reduced adiponectin and HDL cholesterol without elevated C-reactive protein: clues to the biology of premature atherosclerosis in Hutchinson-Gilford Progeria Syndrome
Gordon LB, Harten IA, Patti ME, Lichtenstein AH. J Pediatr. 2005;146(3):336-341. doi:10.1016/j.jpeds.2004.10.064
Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome
Capell BC, Erdos MR, Madigan JP, et al. Proc Natl Acad Sci U S A. 2005;102(36):12879-12884. doi:10.1073/pnas.0506001102
2004
Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome
Goldman RD, Shumaker DK, Erdos MR, et al. Proc Natl Acad Sci U S A. 2004;101(24):8963-8968. doi:10.1073/pnas.0402943101
PRF Clinical Drug Trials
Publications Reporting Results from Clinical Trials
Sponsored by The Progeria Research Foundation
2025
Hutchinson-Gilford Progeria Syndrome
Gordon LB, Brown WT, Collins FS. 2003 Dec 12 [Updated 2025 Mar 13]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025.
Longitudinal Changes in Myocardial Deformation in Hutchinson-Gilford Progeria Syndrome
Olsen FJ, Biering-Sørensen T, Lunze FI, et al. Circ Cardiovasc Imaging. 2025;18(2):e017544. doi:10.1161/CIRCIMAGING.124.017544
2024
Abnormal Myocardial Deformation Despite Normal Ejection Fraction in Hutchinson-Gilford Progeria Syndrome
Olsen FJ, Biering-Sørensen T, Lunze F, et al. J Am Heart Assoc. 2024;13(3):e031470. doi:10.1161/JAHA.123.031470
2023
Plasma Progerin in Patients With Hutchinson-Gilford Progeria Syndrome: Immunoassay Development and Clinical Evaluation
Gordon LB, Norris W, Hamren S, et al. Circulation. 2023;147(23):1734-1744. doi:10.1161/CIRCULATIONAHA.122.060002
Baseline Range of Motion, Strength, Motor Function, and Participation in Youth with Hutchinson-Gilford Progeria Syndrome
Malloy J, Berry E, Correia A, et al. Phys Occup Ther Pediatr. 2023;43(4):482-501. doi:10.1080/01942638.2022.2158054
Progression of Cardiac Abnormalities in Hutchinson-Gilford Progeria Syndrome: A Prospective Longitudinal Study
Olsen FJ, Gordon LB, Smoot L, et al. Circulation. 2023;147(23):1782-1784. doi:10.1161/CIRCULATIONAHA.123.064370
2022
Clonal hematopoiesis is not prevalent in Hutchinson-Gilford progeria syndrome
Díez-Díez M, Amorós-Pérez M, de la Barrera J, et al. Geroscience. 2023;45(2):1231-1236. doi:10.1007/s11357-022-00607-2
FDA approval summary for lonafarnib (Zokinvy) for the treatment of Hutchinson-Gilford progeria syndrome and processing-deficient progeroid laminopathies
Suzuki M, Jeng LJB, Chefo S, et al. Genet Med. 2023;25(2):100335. doi:10.1016/j.gim.2022.11.003
2020
Skeletal maturation and long-bone growth patterns of patients with progeria: a retrospective study
Tsai A, Johnston PR, Gordon LB, Walters M, Kleinman M, Laor T. Lancet Child Adolesc Health. 2020;4(4):281-289. doi:10.1016/S2352-4642(20)30023-7
2019
Extraskeletal Calcifications in Hutchinson-Gilford Progeria Syndrome
Gordon CM, Cleveland RH, Baltrusaitis K, et al. Bone. 2019;125:103-111. doi:10.1016/j.bone.2019.05.008
2018
Association of Lonafarnib Treatment vs No Treatment With Mortality Rate in Patients With Hutchinson-Gilford Progeria Syndrome
Gordon LB, Shappell H, Massaro J, et al. JAMA. 2018;319(16):1687-1695. doi:10.1001/jama.2018.3264
Survey of plasma proteins in children with progeria pre-therapy and on-therapy with lonafarnib
Gordon LB, Campbell SE, Massaro JM, et al. Pediatr Res. 2018;83(5):982-992. doi:10.1038/pr.2018.9
Microbiome at sites of gingival recession in children with Hutchinson-Gilford progeria syndrome
Bassir SH, Chase I, Paster BJ, et al. J Periodontol. 2018;89(6):635-644. doi:10.1002/JPER.17-0351
Pubertal Progression in Female Adolescents with Progeria
Greer MM, Kleinman ME, Gordon LB, et al. J Pediatr Adolesc Gynecol. 2018;31(3):238-241. doi:10.1016/j.jpag.2017.12.005
Cardiac Abnormalities in Patients With Hutchinson-Gilford Progeria Syndrome
Prakash A, Gordon LB, Kleinman ME, et al. JAMA Cardiol. 2018;3(4):326-334. doi:10.1001/jamacardio.2017.5235
2017
Ophthalmologic Features of Progeria
Mantagos IS, Kleinman ME, Kieran MW, Gordon LB. Am J Ophthalmol. 2017;182:126-132. doi:10.1016/j.ajo.2017.07.020
2016
Clinical Trial of the Protein Farnesylation Inhibitors Lonafarnib, Pravastatin, and Zoledronic Acid in Children With Hutchinson-Gilford Progeria Syndrome
Gordon LB, Kleinman ME, Massaro J, et al. Circulation. 2016;134(2):114-125. doi:10.1161/CIRCULATIONAHA.116.022188
Seeking a Cure for One of the Rarest Diseases: Progeria
Collins FS. Circulation. 2016;134(2):126-129. doi:10.1161/CIRCULATIONAHA.116.022965
2014
Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome
Gordon LB, Massaro J, D’Agostino RB Sr, et al. Circulation. 2014;130(1):27-34. doi:10.1161/CIRCULATIONAHA.113.008285
Initial cutaneous manifestations of Hutchinson-Gilford progeria syndrome
Rork JF, Huang JT, Gordon LB, Kleinman M, Kieran MW, Liang MG. Pediatr Dermatol. 2014;31(2):196-202. doi:10.1111/pde.12284
2013
Imaging characteristics of cerebrovascular arteriopathy and stroke in Hutchinson-Gilford progeria syndrome
Silvera VM, Gordon LB, Orbach DB, Campbell SE, Machan JT, Ullrich NJ. AJNR Am J Neuroradiol. 2013;34(5):1091-1097. doi:10.3174/ajnr.A3341
Neurologic features of Hutchinson-Gilford progeria syndrome after lonafarnib treatment
Ullrich NJ, Kieran MW, Miller DT, et al. Neurology. 2013;81(5):427-430. doi:10.1212/WNL.0b013e31829d85c0
Moving from gene discovery to clinical trials in Hutchinson-Gilford progeria syndrome
King AA, Heyer GL. Neurology. 2013;81(5):408-409. doi:10.1212/WNL.0b013e31829d87cd
2012
Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome
Gordon LB, Kleinman ME, Miller DT, et al. Proc Natl Acad Sci U S A. 2012;109(41):16666-16671. doi:10.1073/pnas.1202529109
Mechanisms of premature vascular aging in children with Hutchinson-Gilford progeria syndrome
Gerhard-Herman M, Smoot LB, Wake N, et al. Hypertension. 2012;59(1):92-97. doi:10.1161/HYPERTENSIONAHA.111.180919
A prospective study of radiographic manifestations in Hutchinson-Gilford progeria syndrome
Cleveland RH, Gordon LB, Kleinman ME, et al. Pediatr Radiol. 2012;42(9):1089-1098. doi:10.1007/s00247-012-2423-1
Craniofacial abnormalities in Hutchinson-Gilford progeria syndrome
Ullrich NJ, Silvera VM, Campbell SE, Gordon LB. AJNR Am J Neuroradiol. 2012;33(8):1512-1518. doi:10.3174/ajnr.A3088
2011
Hutchinson-Gilford progeria is a skeletal dysplasia
Gordon CM, Gordon LB, Snyder BD, et al.. J Bone Miner Res. 2011;26(7):1670-1679. doi:10.1002/jbmr.392
Otologic and audiologic manifestations of Hutchinson-Gilford progeria syndrome
Guardiani E, Zalewski C, Brewer C, et al. Laryngoscope. 2011;121(10):2250-2255. doi:10.1002/lary.22151
2009
Hutchinson-Gilford progeria syndrome: oral and craniofacial phenotypes
Domingo DL, Trujillo MI, Council SE, et al. Oral Dis. 2009;15(3):187-195. doi:10.1111/j.1601-0825.2009.01521.x
2008
Phenotype and course of Hutchinson-Gilford progeria syndrome
Merideth MA, Gordon LB, Clauss S, et al. N Engl J Med. 2008;358(6):592-604. doi:10.1056/NEJMoa0706898
PRF International Progeria Registry
Publications Utilizing Data from
The Progeria Research Foundation International Progeria Registry
2025
Hutchinson-Gilford Progeria Syndrome
Gordon LB, Brown WT, Collins FS. 2003 Dec 12 [Updated 2025 Mar 13]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025.
2024
Epidemiological characteristics of patients with Hutchinson-Gilford progeria syndrome and progeroid laminopathies in China
Wang J, Yu Q, Tang X, et al. Pediatr Res. 2024;95(5):1356-1362. doi:10.1038/s41390-023-02981-9
PRF Scientific Workshops
Publications Reporting Results from Scientific Workshops
Sponsored by The Progeria Research Foundation
2021
The progeria research foundation 10th international scientific workshop; researching possibilities, ExTENding lives – webinar version scientific summary
Gordon LB, Tuminelli K, Andrés V, et al. Aging (Albany NY). 2021;13(6):9143-9151. doi:10.18632/aging.202835
2014
Progeria: a paradigm for translational medicine
Gordon LB, Rothman FG, López-Otín C, Misteli T. Cell. 2014;156(3):400-407. doi:10.1016/j.cell.2013.12.028
2008
Highlights of the 2007 Progeria Research Foundation scientific workshop: progress in translational science
Gordon LB, Harling-Berg CJ, Rothman FG. J Gerontol A Biol Sci Med Sci. 2008;63(8):777-787. doi:10.1093/gerona/63.8.777
2002
Searching for clues to premature aging
Uitto J. Trends Mol Med. 2002;8(4):155-157. doi:10.1016/s1471-4914(02)02288-8
PRF Grant Funded Programs
Publications Acknowledging Grant Funding from
The Progeria Research Foundation
2025
Hutchinson-Gilford Progeria Syndrome
Gordon LB, Brown WT, Collins FS. 2003 Dec 12 [Updated 2025 Mar 13]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025.
Restoring neuropetide Y levels in the hypothalamus ameliorates premature aging phenotype in mice
Ferreira-Marques M, Carmo-Silva S, Pereira J, et al. Geroscience. Published online February 27, 2025. doi:10.1007/s11357-025-01574-0
Longitudinal Changes in Myocardial Deformation in Hutchinson-Gilford Progeria Syndrome
Olsen FJ, Biering-Sørensen T, Lunze FI, et al. Circ Cardiovasc Imaging. 2025;18(2):e017544. doi:10.1161/CIRCIMAGING.124.017544
2024
Intervention for critical aortic stenosis in Hutchinson-Gilford progeria syndrome
Gordon LB, Basso S, Maestranzi J, et al. Front Cardiovasc Med. 2024;11:1356010. Published 2024 Apr 25. doi:10.3389/fcvm.2024.1356010
Inflammation and Fibrosis in Progeria: Organ-Specific Responses in an HGPS Mouse Model
Krüger P, Schroll M, Fenzl F, et al. Int J Mol Sci. 2024;25(17):9323. Published 2024 Aug 28. doi:10.3390/ijms25179323
The NLRP3 inhibitor Dapansutrile improves the therapeutic action of lonafarnib on progeroid mice
Muela-Zarzuela I, Suarez-Rivero JM, Boy-Ruiz D, et al. Aging Cell. 2024;23(9):e14272. doi:10.1111/acel.14272
Abnormal Myocardial Deformation Despite Normal Ejection Fraction in Hutchinson-Gilford Progeria Syndrome
Olsen FJ, Biering-Sørensen T, Lunze F, et al. J Am Heart Assoc. 2024;13(3):e031470. doi:10.1161/JAHA.123.031470
Vascular Calcification: A Passive Process That Requires Active Inhibition
Villa-Bellosta R. Biology (Basel). 2024;13(2):111. Published 2024 Feb 9. doi:10.3390/biology13020111
Peripheral artery disease and outcomes: how can we improve risk prediction?
Yanamandala M, Goudot G, Gerhard-Herman MD. Eur Heart J. 2024;45(19):1750-1752. doi:10.1093/eurheartj/ehae154
2023
Ghrelin delays premature aging in Hutchinson-Gilford progeria syndrome
Ferreira-Marques M, Carvalho A, Franco AC, et al. Aging Cell. 2023;22(12):e13983. doi:10.1111/acel.13983
Plasma Progerin in Patients With Hutchinson-Gilford Progeria Syndrome: Immunoassay Development and Clinical Evaluation
Gordon LB, Norris W, Hamren S, et al. Circulation. 2023;147(23):1734-1744. doi:10.1161/CIRCULATIONAHA.122.060002
Impact of Combined Baricitinib and FTI Treatment on Adipogenesis in Hutchinson-Gilford Progeria Syndrome and Other Lipodystrophic Laminopathies
Hartinger R, Lederer EM, Schena E, Lattanzi G, Djabali K. Cells. 2023;12(10):1350. Published 2023 May 9. doi:10.3390/cells12101350
Turnover and replication analysis by isotope labeling (TRAIL) reveals the influence of tissue context on protein and organelle lifetimes
Hasper J, Welle K, Hryhorenko J, Ghaemmaghami S, Buchwalter A. Mol Syst Biol. 2023;19(4):e11393. doi:10.15252/msb.202211393
Long lifetime and tissue-specific accumulation of lamin A/C in Hutchinson-Gilford progeria syndrome
Hasper J, Welle K, Swovick K, Hryhorenko J, Ghaemmaghami S, Buchwalter A. J Cell Biol. 2024;223(1):e202307049. doi:10.1083/jcb.202307049
Progerinin, an Inhibitor of Progerin, Alleviates Cardiac Abnormalities in a Model Mouse of Hutchinson-Gilford Progeria Syndrome
Kang SM, Seo S, Song EJ, et al. Cells. 2023;12(9):1232. Published 2023 Apr 24. doi:10.3390/cells12091232
A new fluorescent probe for the visualization of progerin
Macicior J, Fernández D, Ortega-Gutiérrez S. Bioorg Chem. 2024;142:106967. doi:10.1016/j.bioorg.2023.106967
Baseline Range of Motion, Strength, Motor Function, and Participation in Youth with Hutchinson-Gilford Progeria Syndrome
Malloy J, Berry E, Correia A, et al. Phys Occup Ther Pediatr. 2023;43(4):482-501. doi:10.1080/01942638.2022.2158054
The farnesyl transferase inhibitor (FTI) lonafarnib improves nuclear morphology in ZMPSTE24-deficient fibroblasts from patients with the progeroid disorder MAD-B
Odinammadu KO, Shilagardi K, Tuminelli K, Judge DP, Gordon LB, Michaelis S. Nucleus. 2023;14(1):2288476. doi:10.1080/19491034.2023.2288476
Progression of Cardiac Abnormalities in Hutchinson-Gilford Progeria Syndrome: A Prospective Longitudinal Study
Olsen FJ, Gordon LB, Smoot L, et al. Circulation. 2023;147(23):1782-1784. doi:10.1161/CIRCULATIONAHA.123.064370
2022
Progeria: a perspective on potential drug targets and treatment strategies
Benedicto I, Chen X, Bergo MO, Andrés V. Expert Opin Ther Targets. 2022;26(5):393-399. doi:10.1080/14728222.2022.2078699
Quantification of Farnesylated Progerin in Hutchinson-Gilford Progeria Patient Cells by Mass Spectrometry
Camafeita E, Jorge I, Rivera-Torres J, Andrés V, Vázquez J. Int J Mol Sci. 2022;23(19):11733. Published 2022 Oct 3. doi:10.3390/ijms231911733
Clonal hematopoiesis is not prevalent in Hutchinson-Gilford progeria syndrome
Díez-Díez M, Amorós-Pérez M, de la Barrera J, et al. Geroscience. 2023;45(2):1231-1236. doi:10.1007/s11357-022-00607-2
Endothelial and systemic upregulation of miR-34a-5p fine-tunes senescence in progeria
Manakanatas C, Ghadge SK, Agic A, et al. Aging (Albany NY). 2022;14(1):195-224. doi:10.18632/aging.203820
2021
Molecular and Cellular Mechanisms Driving Cardiovascular Disease in Hutchinson-Gilford Progeria Syndrome: Lessons Learned from Animal Models
Benedicto I, Dorado B, Andrés V. Cells. 2021;10(5):1157. Published 2021 May 11. doi:10.3390/cells10051157
A small-molecule ICMT inhibitor delays senescence of Hutchinson-Gilford progeria syndrome cells
Chen X, Yao H, Kashif M, et al. Elife. 2021;10:e63284. Published 2021 Feb 2. doi:10.7554/eLife.63284
A targeted antisense therapeutic approach for Hutchinson-Gilford progeria syndrome
Erdos MR, Cabral WA, Tavarez UL, et al. Nat Med. 2021;27(3):536-545. doi:10.1038/s41591-021-01274-0
Inhibition of the NLRP3 inflammasome improves lifespan in animal murine model of Hutchinson-Gilford Progeria
González-Dominguez A, Montañez R, Castejón-Vega B, et al. EMBO Mol Med. 2021;13(10):e14012. doi:10.15252/emmm.202114012
Progerinin, an optimized progerin-lamin A binding inhibitor, ameliorates premature senescence phenotypes of Hutchinson-Gilford progeria syndrome
Kang SM, Yoon MH, Ahn J, et al. [published correction appears in Commun Biol. 2021 Mar 2;4(1):297. doi: 10.1038/s42003-021-01843-6]. Commun Biol. 2021;4(1):5. Published 2021 Jan 4. doi:10.1038/s42003-020-01540-w
In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice
Koblan LW, Erdos MR, Wilson C, et al. Nature. 2021;589(7843):608-614. doi:10.1038/s41586-020-03086-7
A novel homozygous synonymous variant further expands the phenotypic spectrum of POLR3A-related pathologies
Lessel D, Rading K, Campbell SE, et al. Am J Med Genet A. 2022;188(1):216-223. doi:10.1002/ajmg.a.62525
Paclitaxel mitigates structural alterations and cardiac conduction system defects in a mouse model of Hutchinson-Gilford progeria syndrome
Macías Á, Díaz-Larrosa JJ, Blanco Y, et al. Cardiovasc Res. 2022;118(2):503-516. doi:10.1093/cvr/cvab055
Small-Molecule Therapeutic Perspectives for the Treatment of Progeria
Macicior J, Marcos-Ramiro B, Ortega-Gutiérrez S. Int J Mol Sci. 2021;22(13):7190. Published 2021 Jul 3. doi:10.3390/ijms22137190
Isoprenylcysteine Carboxylmethyltransferase-Based Therapy for Hutchinson-Gilford Progeria Syndrome
Marcos-Ramiro B, Gil-Ordóñez A, Marín-Ramos NI, et al. ACS Cent Sci. 2021;7(8):1300-1310. doi:10.1021/acscentsci.0c01698
Systematic screening identifies therapeutic antisense oligonucleotides for Hutchinson-Gilford progeria syndrome
Puttaraju M, Jackson M, Klein S, et al. [published correction appears in Nat Med. 2021 Jul;27(7):1309. doi: 10.1038/s41591-021-01415-5]. Nat Med. 2021;27(3):526-535. doi:10.1038/s41591-021-01262-4
Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and lifespan in mice
Richardson NE, Konon EN, Schuster HS, et al. Nat Aging. 2021;1(1):73-86. doi:10.1038/s43587-020-00006-2
Interleukin-6 neutralization ameliorates symptoms in prematurely aged mice
Squarzoni S, Schena E, Sabatelli P, et al. Aging Cell. 2021;20(1):e13285. doi:10.1111/acel.13285
Decreased vascular smooth muscle contractility in Hutchinson-Gilford Progeria Syndrome linked to defective smooth muscle myosin heavy chain expression
von Kleeck R, Castagnino P, Roberts E, Talwar S, Ferrari G, Assoian RK. Sci Rep. 2021;11(1):10625. Published 2021 May 19. doi:10.1038/s41598-021-90119-4
2020
Neuropeptide Y Enhances Progerin Clearance and Ameliorates the Senescent Phenotype of Human Hutchinson-Gilford Progeria Syndrome Cells
Aveleira CA, Ferreira-Marques M, Cortes L, et al. J Gerontol A Biol Sci Med Sci. 2020;75(6):1073-1078. doi:10.1093/gerona/glz280
Interplay of the nuclear envelope with chromatin in physiology and pathology
Burla R, La Torre M, Maccaroni K, Verni F, Giunta S, Saggio I. Nucleus. 2020;11(1):205-218. doi:10.1080/19491034.2020.1806661
Lamin A involvement in ageing processes
Cenni V, Capanni C, Mattioli E, et al. Ageing Res Rev. 2020;62:101073. doi:10.1016/j.arr.2020.101073
Evaluation of musculoskeletal phenotype of the G608G progeria mouse model with lonafarnib, pravastatin, and zoledronic acid as treatment groups
Cubria MB, Suarez S, Masoudi A, et al. Proc Natl Acad Sci U S A. 2020;117(22):12029-12040. doi:10.1073/pnas.1906713117
Identification of common cardiometabolic alterations and deregulated pathways in mouse and pig models of aging
Fanjul V, Jorge I, Camafeita E, et al. Aging Cell. 2020;19(9):e13203. doi:10.1111/acel.13203
Phosphorylated Lamin A/C in the Nuclear Interior Binds Active Enhancers Associated with Abnormal Transcription in Progeria
Ikegami K, Secchia S, Almakki O, Lieb JD, Moskowitz IP. Dev Cell. 2020;52(6):699-713.e11. doi:10.1016/j.devcel.2020.02.011
Cytoskeleton stiffness regulates cellular senescence and innate immune response in Hutchinson-Gilford Progeria Syndrome
Mu X, Tseng C, Hambright WS, et al. Aging Cell. 2020;19(8):e13152. doi:10.1111/acel.13152
First progeria monkey model generated using base editor
Reddy P, Shao Y, Hernandez-Benitez R, Nuñez Delicado E, Izpisua Belmonte JC. Protein Cell. 2020;11(12):862-865. doi:10.1007/s13238-020-00765-z
Skeletal maturation and long-bone growth patterns of patients with progeria: a retrospective study
Tsai A, Johnston PR, Gordon LB, Walters M, Kleinman M, Laor T. Lancet Child Adolesc Health. 2020;4(4):281-289. doi:10.1016/S2352-4642(20)30023-7
New treatments for progeria
Villa-Bellosta R. Aging (Albany NY). 2019;11(24):11801-11802. doi:10.18632/aging.102626
Dietary magnesium supplementation improves lifespan in a mouse model of progeria
Villa-Bellosta R. EMBO Mol Med. 2020;12(10):e12423. doi:10.15252/emmm.202012423
Redox theory in progeria
Villa-Bellosta R. Aging (Albany NY). 2020;12(21):20934-20935. doi:10.18632/aging.104211
2019
Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice
Bárcena C, Valdés-Mas R, Mayoral P, et al. Nat Med. 2019;25(8):1234-1242. doi:10.1038/s41591-019-0504-5
Single-dose CRISPR-Cas9 therapy extends lifespan of mice with Hutchinson-Gilford progeria syndrome
Beyret E, Liao HK, Yamamoto M, et al. Nat Med. 2019;25(3):419-422. doi:10.1038/s41591-019-0343-4
Generation and characterization of a novel knockin minipig model of Hutchinson-Gilford progeria syndrome
Dorado B, Pløen GG, Barettino A, et al. Cell Discov. 2019;5:16. Published 2019 Mar 19. doi:10.1038/s41421-019-0084-z
Extraskeletal Calcifications in Hutchinson-Gilford Progeria Syndrome
Gordon CM, Cleveland RH, Baltrusaitis K, et al. Bone. 2019;125:103-111. doi:10.1016/j.bone.2019.05.008
Vascular smooth muscle cell loss underpins the accelerated atherosclerosis in Hutchinson-Gilford progeria syndrome
Hamczyk MR, Andrés V. Nucleus. 2019;10(1):28-34. doi:10.1080/19491034.2019.1589359
Progerin accelerates atherosclerosis by inducing endoplasmic reticulum stress in vascular smooth muscle cells
Hamczyk MR, Villa-Bellosta R, Quesada V, et al. EMBO Mol Med. 2019;11(4):e9736. doi:10.15252/emmm.201809736
Remodeling of Bone Marrow Hematopoietic Stem Cell Niches Promotes Myeloid Cell Expansion during Premature or Physiological Aging
Ho YH, Del Toro R, Rivera-Torres J, et al. Cell Stem Cell. 2019;25(3):407-418.e6. doi:10.1016/j.stem.2019.06.007
Dysfunction of iPSC-derived endothelial cells in human Hutchinson-Gilford progeria syndrome
Matrone G, Thandavarayan RA, Walther BK, Meng S, Mojiri A, Cooke JP. Cell Cycle. 2019;18(19):2495-2508. doi:10.1080/15384101.2019.1651587
Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome
Santiago-Fernández O, Osorio FG, Quesada V, et al. Nat Med. 2019;25(3):423-426. doi:10.1038/s41591-018-0338-6
Physicochemical mechanotransduction alters nuclear shape and mechanics via heterochromatin formation
Stephens AD, Liu PZ, Kandula V, et al. Mol Biol Cell. 2019;30(17):2320-2330. doi:10.1091/mbc.E19-05-0286
ATP-based therapy prevents vascular calcification and extends longevity in a mouse model of Hutchinson-Gilford progeria syndrome
Villa-Bellosta R. Proc Natl Acad Sci U S A. 2019;116(47):23698-23704. doi:10.1073/pnas.1910972116
Impact of acetate- or citrate-acidified bicarbonate dialysate on ex vivo aorta wall calcification
Villa-Bellosta R, Hernández-Martínez E, Mérida-Herrero E, González-Parra E. Sci Rep. 2019;9(1):11374. Published 2019 Aug 6. doi:10.1038/s41598-019-47934-7
Questioning the Safety of Calcidiol in Hemodialysis Patients
Villa-Bellosta R, Mahillo-Fernández I, Ortíz A, González-Parra E. Nutrients. 2019;11(5):959. Published 2019 Apr 26. doi:10.3390/nu11050959
2018
Methionine Restriction Extends Lifespan in Progeroid Mice and Alters Lipid and Bile Acid Metabolism
Bárcena C, Quirós PM, Durand S, et al. Cell Rep. 2018;24(9):2392-2403. doi:10.1016/j.celrep.2018.07.089
Microbiome at sites of gingival recession in children with Hutchinson-Gilford progeria syndrome
Bassir SH, Chase I, Paster BJ, et al. J Periodontol. 2018;89(6):635-644. doi:10.1002/JPER.17-0351
Genomic instability and DNA replication defects in progeroid syndromes
Burla R, La Torre M, Merigliano C, Vernì F, Saggio I. Nucleus. 2018;9(1):368-379. doi:10.1080/19491034.2018.1476793
Mouse Models to Disentangle the Hallmarks of Human Aging
Folgueras AR, Freitas-Rodríguez S, Velasco G, López-Otín C. Circ Res. 2018;123(7):905-924. doi:10.1161/CIRCRESAHA.118.312204
Survey of plasma proteins in children with progeria pre-therapy and on-therapy with lonafarnib
Gordon LB, Campbell SE, Massaro JM, et al. Pediatr Res. 2018;83(5):982-992. doi:10.1038/pr.2018.9
Association of Lonafarnib Treatment vs No Treatment With Mortality Rate in Patients With Hutchinson-Gilford Progeria Syndrome
Gordon LB, Shappell H, Massaro J, et al. JAMA. 2018;319(16):1687-1695. doi:10.1001/jama.2018.3264
Pubertal Progression in Female Adolescents with Progeria
Greer MM, Kleinman ME, Gordon LB, et al. J Pediatr Adolesc Gynecol. 2018;31(3):238-241. doi:10.1016/j.jpag.2017.12.005
Accelerated atherosclerosis in HGPS
Hamczyk MR, Andrés V. Aging (Albany NY). 2018;10(10):2555-2556. doi:10.18632/aging.101608
Vascular Smooth Muscle-Specific Progerin Expression Accelerates Atherosclerosis and Death in a Mouse Model of Hutchinson-Gilford Progeria Syndrome
Hamczyk MR, Villa-Bellosta R, Gonzalo P, et al. Circulation. 2018;138(3):266-282. doi:10.1161/CIRCULATIONAHA.117.030856
Analyses of LMNA-negative juvenile progeroid cases confirms biallelic POLR3A mutations in Wiedemann-Rautenstrauch-like syndrome and expands the phenotypic spectrum of PYCR1 mutations
Lessel D, Ozel AB, Campbell SE, et al. Hum Genet. 2018;137(11-12):921-939. doi:10.1007/s00439-018-1957-1
Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse
Osmanagic-Myers S, Kiss A, Manakanatas C, et al. J Clin Invest. 2019;129(2):531-545. doi:10.1172/JCI121297
Cardiac Abnormalities in Patients With Hutchinson-Gilford Progeria Syndrome
Prakash A, Gordon LB, Kleinman ME, et al. JAMA Cardiol. 2018;3(4):326-334. doi:10.1001/jamacardio.2017.5235
OGT (O-GlcNAc Transferase) Selectively Modifies Multiple Residues Unique to Lamin A
Simon DN, Wriston A, Fan Q, et al. Cells. 2018;7(5):44. Published 2018 May 17. doi:10.3390/cells7050044
Nuclear import pathway key to rescuing dominant progerin phenotypes
Wilson KL. Sci Signal. 2018;11(537):eaat9448. Published 2018 Jul 3. doi:10.1126/scisignal.aat9448
Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome
Wu Z, Zhang W, Song M, et al. Protein Cell. 2018;9(4):333-350. doi:10.1007/s13238-018-0517-8
2017
Functional relevance of miRNAs in premature ageing
Caravia XM, Roiz-Valle D, Morán-Álvarez A, López-Otín C. Mech Ageing Dev. 2017;168:10-19. doi:10.1016/j.mad.2017.05.003
Reprogramming progeria fibroblasts re-establishes a normal epigenetic landscape
Chen Z, Chang WY, Etheridge A, et al. Aging Cell. 2017;16(4):870-887. doi:10.1111/acel.12621
A-type lamins and cardiovascular disease in premature aging syndromes
Dorado B, Andrés V. Curr Opin Cell Biol. 2017;46:17-25. doi:10.1016/j.ceb.2016.12.005
LMNA Sequences of 60,706 Unrelated Individuals Reveal 132 Novel Missense Variants in A-Type Lamins and Suggest a Link between Variant p.G602S and Type 2 Diabetes – PubMed (nih.gov)
Florwick A, Dharmaraj T, Jurgens J, Valle D, Wilson KL. Front Genet. 2017;8:79. Published 2017 Jun 15. doi:10.3389/fgene.2017.00079
Intermittent treatment with farnesyltransferase inhibitor and sulforaphane improves cellular homeostasis in Hutchinson-Gilford progeria fibroblasts
Gabriel D, Shafry DD, Gordon LB, Djabali K. Oncotarget. 2017;8(39):64809-64826. Published 2017 Jul 18. doi:10.18632/oncotarget.19363
Aging in the Cardiovascular System: Lessons from Hutchinson-Gilford Progeria Syndrome
Hamczyk MR, del Campo L, Andrés V. Annu Rev Physiol. 2018;80:27-48. doi:10.1146/annurev-physiol-021317-121454
Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes
Hilton BA, Liu J, Cartwright BM, et al. FASEB J. 2017;31(9):3882-3893. doi:10.1096/fj.201700014R
Mice with reduced expression of the telomere-associated protein Ft1 develop p53-sensitive progeroid traits
La Torre M, Merigliano C, Burla R, et al. Aging Cell. 2018;17(4):e12730. doi:10.1111/acel.12730
Telomerase mRNA Reverses Senescence in Progeria Cells
Li Y, Zhou G, Bruno IG, Cooke JP. J Am Coll Cardiol. 2017;70(6):804-805. doi:10.1016/j.jacc.2017.06.017
Ophthalmologic Features of Progeria
Mantagos IS, Kleinman ME, Kieran MW, Gordon LB. Am J Ophthalmol. 2017;182:126-132. doi:10.1016/j.ajo.2017.07.020
Protein sequestration at the nuclear periphery as a potential regulatory mechanism in premature aging
Serebryannyy L, Misteli T. J Cell Biol. 2018;217(1):21-37. doi:10.1083/jcb.201706061
Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus
Stephens AD, Banigan EJ, Adam SA, Goldman RD, Marko JF. Mol Biol Cell. 2017;28(14):1984-1996. doi:10.1091/mbc.E16-09-0653
Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins
Stephens AD, Liu PZ, Banigan EJ, et al. Mol Biol Cell. 2018;29(2):220-233. doi:10.1091/mbc.E17-06-0410
The molecular architecture of lamins in somatic cells
Turgay Y, Eibauer M, Goldman AE, et al. Nature. 2017;543(7644):261-264. doi:10.1038/nature21382
Nucleoplasmic lamins define growth-regulating functions of lamina-associated polypeptide 2α in progeria cells
Vidak S, Georgiou K, Fichtinger P, Naetar N, Dechat T, Foisner R. J Cell Sci. 2018;131(3):jcs208462. Published 2018 Feb 8. doi:10.1242/jcs.208462
Progerin-Induced Replication Stress Facilitates Premature Senescence in Hutchinson-Gilford Progeria Syndrome
Wheaton K, Campuzano D, Ma W, et al. Mol Cell Biol. 2017;37(14):e00659-16. Published 2017 Jun 29. doi:10.1128/MCB.00659-16
Substrate stiffness-dependent regulation of the SRF-Mkl1 co-activator complex requires the inner nuclear membrane protein Emerin
Willer MK, Carroll CW. J Cell Sci. 2017;130(13):2111-2118. doi:10.1242/jcs.197517
2016
A novel somatic mutation achieves partial rescue in a child with Hutchinson-Gilford progeria syndrome
Bar DZ, Arlt MF, Brazier JF, et al. J Med Genet. 2017;54(3):212-216. doi:10.1136/jmedgenet-2016-104295
Simple Separation of Functionally Distinct Populations of Lamin-Binding Proteins
Berk JM, Wilson KL. Methods Enzymol. 2016;569:101-114. doi:10.1016/bs.mie.2015.09.034
Seeking a Cure for One of the Rarest Diseases: Progeria
Collins FS. Circulation. 2016;134(2):126-129. doi:10.1161/CIRCULATIONAHA.116.022965
Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson-Gilford progeria fibroblasts
Eisch V, Lu X, Gabriel D, Djabali K. Oncotarget. 2016;7(17):24700-24718. doi:10.18632/oncotarget.8267
Temsirolimus Partially Rescues the Hutchinson-Gilford Progeria Cellular Phenotype
Gabriel D, Gordon LB, Djabali K. PLoS One. 2016;11(12):e0168988. Published 2016 Dec 29. doi:10.1371/journal.pone.0168988
Clinical Trial of the Protein Farnesylation Inhibitors Lonafarnib, Pravastatin, and Zoledronic Acid in Children With Hutchinson-Gilford Progeria Syndrome
Gordon LB, Kleinman ME, Massaro J, et al. Circulation. 2016;134(2):114-125. doi:10.1161/CIRCULATIONAHA.116.022188
Vitamin D receptor signaling improves Hutchinson-Gilford progeria syndrome cellular phenotypes
Kreienkamp R, Croke M, Neumann MA, et al. Oncotarget. 2016;7(21):30018-30031. doi:10.18632/oncotarget.9065
Repression of the Antioxidant NRF2 Pathway in Premature Aging
Kubben N, Zhang W, Wang L, et al. Cell. 2016;165(6):1361-1374. doi:10.1016/j.cell.2016.05.017
Interruption of progerin-lamin A/C binding ameliorates Hutchinson-Gilford progeria syndrome phenotype
Lee SJ, Jung YS, Yoon MH, et al. J Clin Invest. 2016;126(10):3879-3893. doi:10.1172/JCI84164
Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase
Moiseeva O, Lopes-Paciencia S, Huot G, Lessard F, Ferbeyre G. Aging (Albany NY). 2016;8(2):366-381. doi:10.18632/aging.100903
Cardiac electrical defects in progeroid mice and Hutchinson-Gilford progeria syndrome patients with nuclear lamina alterations
Rivera-Torres J, Calvo CJ, Llach A, et al. Proc Natl Acad Sci U S A. 2016;113(46):E7250-E7259. doi:10.1073/pnas.1603754113
Molecular insights into the premature aging disease progeria
Vidak S, Foisner R. Histochem Cell Biol. 2016;145(4):401-417. doi:10.1007/s00418-016-1411-1
2015
ADAMTS7 in cardiovascular disease: from bedside to bench and back again?
Arroyo AG, Andrés V. Circulation. 2015;131(13):1156-1159. doi:10.1161/CIRCULATIONAHA.115.015711
Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria
Chojnowski A, Ong PF, Wong ES, et al. Elife. 2015;4:e07759. Published 2015 Aug 27. doi:10.7554/eLife.07759
Autophagy mediates degradation of nuclear lamina
Dou Z, Xu C, Donahue G, et al. Nature. 2015;527(7576):105-109. doi:10.1038/nature15548
The tail domain of lamin B1 is more strongly modulated by divalent cations than lamin A
Ganesh S, Qin Z, Spagnol ST, et al. Nucleus. 2015;6(3):203-211. doi:10.1080/19491034.2015.1031436
A high-content imaging-based screening pipeline for the systematic identification of anti-progeroid compounds
Kubben N, Brimacombe KR, Donegan M, Li Z, Misteli T. Methods. 2016;96:46-58. doi:10.1016/j.ymeth.2015.08.024
Mutant lamin A links prophase to a p53 independent senescence program
Moiseeva O, Lessard F, Acevedo-Aquino M, Vernier M, Tsantrizos YS, Ferbeyre G. Cell Cycle. 2015;14(15):2408-2421. doi:10.1080/15384101.2015.1053671
Lamins at the crossroads of mechanosignaling
Osmanagic-Myers S, Dechat T, Foisner R. Genes Dev. 2015;29(3):225-237. doi:10.1101/gad.255968.114
Gene-rich chromosomal regions are preferentially localized in the lamin B deficient nuclear blebs of atypical progeria cells
Bercht Pfleghaar K, Taimen P, Butin-Israeli V, et al. [published correction appears in Nucleus. 2015;6(3):247. doi: 10.1080/19491034.2015.1049921]. Nucleus. 2015;6(1):66-76. doi:10.1080/19491034.2015.1004256
Structural organization of nuclear lamins A, C, B1, and B2 revealed by superresolution microscopy
Shimi T, Kittisopikul M, Tran J, et al. Mol Biol Cell. 2015;26(22):4075-4086. doi:10.1091/mbc.E15-07-0461
Transgene silencing of the Hutchinson-Gilford progeria syndrome mutation results in a reversible bone phenotype, whereas resveratrol treatment does not show overall beneficial effects
Strandgren C, Nasser HA, McKenna T, et al. FASEB J. 2015;29(8):3193-3205. doi:10.1096/fj.14-269217
Proliferation of progeria cells is enhanced by lamina-associated polypeptide 2α (LAP2α) through expression of extracellular matrix proteins
Vidak S, Kubben N, Dechat T, Foisner R. Genes Dev. 2015;29(19):2022-2036. doi:10.1101/gad.263939.115
2014
Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior
Baek JH, Schmidt E, Viceconte N, et al. Hum Mol Genet. 2015;24(5):1305-1321. doi:10.1093/hmg/ddu541
The non-random repositioning of whole chromosomes and individual gene loci in interphase nuclei and its relevance in disease, infection, aging, and cancer
Bridger JM, Arican-Gotkas HD, Foster HA, et al. [published correction appears in Adv Exp Med Biol. 2014;773:E1]. Adv Exp Med Biol. 2014;773:263-279. doi:10.1007/978-1-4899-8032-8_12
Role of lamin b1 in chromatin instability
Butin-Israeli V, Adam SA, Jain N, et al.. Mol Cell Biol. 2015;35(5):884-898. doi:10.1128/MCB.01145-14
Systematic identification of pathological lamin A interactors
Dittmer TA, Sahni N, Kubben N, et al. Mol Biol Cell. 2014;25(9):1493-1510. doi:10.1091/mbc.E14-02-0733
Sulforaphane enhances progerin clearance in Hutchinson-Gilford progeria fibroblasts
Gabriel D, Roedl D, Gordon LB, Djabali K. Aging Cell. 2015;14(1):78-91. doi:10.1111/acel.12300
Sorting nexin 6 enhances lamin a synthesis and incorporation into the nuclear envelope
González-Granado JM, Navarro-Puche A, Molina-Sanchez P, et al. PLoS One. 2014;9(12):e115571. Published 2014 Dec 23. doi:10.1371/journal.pone.0115571
Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation
González-Granado JM, Silvestre-Roig C, Rocha-Perugini V, et al. Sci Signal. 2014;7(322):ra37. Published 2014 Apr 22. doi:10.1126/scisignal.2004872
Interfacial binding and aggregation of lamin A tail domains associated with Hutchinson-Gilford progeria syndrome
Kalinowski A, Yaron PN, Qin Z, et al. Biophys Chem. 2014;195:43-48. doi:10.1016/j.bpc.2014.08.005
Interphase phosphorylation of lamin A
Kochin V, Shimi T, Torvaldson E, et al. J Cell Sci. 2014;127(Pt 12):2683-2696. doi:10.1242/jcs.141820
Mouse models and aging: longevity and progeria
Liao CY, Kennedy BK. Curr Top Dev Biol. 2014;109:249-285. doi:10.1016/B978-0-12-397920-9.00003-2
Atherosclerosis in ancient humans, accelerated aging syndromes and normal aging: is lamin a protein a common link?
Miyamoto MI, Djabali K, Gordon LB. Glob Heart. 2014;9(2):211-218. doi:10.1016/j.gheart.2014.04.001
Initial cutaneous manifestations of Hutchinson-Gilford progeria syndrome
Rork JF, Huang JT, Gordon LB, Kleinman M, Kieran MW, Liang MG. Pediatr Dermatol. 2014;31(2):196-202. doi:10.1111/pde.12284
2013
Regulation of nucleotide excision repair by nuclear lamin b1
Butin-Israeli V, Adam SA, Goldman RD. PLoS One. 2013;8(7):e69169. Published 2013 Jul 24. doi:10.1371/journal.pone.0069169
Broken nuclei–lamins, nuclear mechanics, and disease
Davidson PM, Lammerding J. Trends Cell Biol. 2014;24(4):247-256. doi:10.1016/j.tcb.2013.11.004
Mechanical model of blebbing in nuclear lamin meshworks
Funkhouser CM, Sknepnek R, Shimi T, Goldman AE, Goldman RD, Olvera de la Cruz M. Proc Natl Acad Sci U S A. 2013;110(9):3248-3253. doi:10.1073/pnas.1300215110
Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics
Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J. Nature. 2013;497(7450):507-511. doi:10.1038/nature12105
Nuclear mechanics and mechanotransduction in health and disease
Isermann P, Lammerding J. Curr Biol. 2013;23(24):R1113-R1121. doi:10.1016/j.cub.2013.11.009
Calcium causes a conformational change in lamin A tail domain that promotes farnesyl-mediated membrane association
Kalinowski A, Qin Z, Coffey K, et al. Biophys J. 2013;104(10):2246-2253. doi:10.1016/j.bpj.2013.04.016
Identification of mitochondrial dysfunction in Hutchinson-Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture
Rivera-Torres J, Acín-Perez R, Cabezas-Sánchez P, et al. J Proteomics. 2013;91:466-477. doi:10.1016/j.jprot.2013.08.008
Imaging characteristics of cerebrovascular arteriopathy and stroke in Hutchinson-Gilford progeria syndrome
Silvera VM, Gordon LB, Orbach DB, Campbell SE, Machan JT, Ullrich NJ. AJNR Am J Neuroradiol. 2013;34(5):1091-1097. doi:10.3174/ajnr.A3341
Neurologic features of Hutchinson-Gilford progeria syndrome after lonafarnib treatment
Ullrich NJ, Kieran MW, Miller DT, et al. Neurology. 2013;81(5):427-430. doi:10.1212/WNL.0b013e31829d85c0
Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment
Villa-Bellosta R, Rivera-Torres J, Osorio FG, et al. Circulation. 2013;127(24):2442-2451. doi:10.1161/CIRCULATIONAHA.112.000571
2012
A prospective study of radiographic manifestations in Hutchinson-Gilford progeria syndrome
Cleveland RH, Gordon LB, Kleinman ME, et al. Pediatr Radiol. 2012;42(9):1089-1098. doi:10.1007/s00247-012-2423-1
Automated image analysis of nuclear shape: what can we learn from a prematurely aged cell?
Driscoll MK, Albanese JL, Xiong ZM, Mailman M, Losert W, Cao K. Aging (Albany NY). 2012;4(2):119-132. doi:10.18632/aging.100434
Mechanisms of premature vascular aging in children with Hutchinson-Gilford progeria syndrome
Gerhard-Herman M, Smoot LB, Wake N, et al. Hypertension. 2012;59(1):92-97. doi:10.1161/HYPERTENSIONAHA.111.180919
Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome
Gordon LB, Kleinman ME, Miller DT, et al. Proc Natl Acad Sci U S A. 2012;109(41):16666-16671. doi:10.1073/pnas.1202529109
Progeria: translational insights from cell biology
Gordon LB, Cao K, Collins FS. J Cell Biol. 2012;199(1):9-13. doi:10.1083/jcb.201207072
Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria
Liu B, Ghosh S, Yang X, et al. Cell Metab. 2012;16(6):738-750. doi:10.1016/j.cmet.2012.11.007
Replication factor C1, the large subunit of replication factor C, is proteolytically truncated in Hutchinson-Gilford progeria syndrome
Tang H, Hilton B, Musich PR, Fang DZ, Zou Y. Aging Cell. 2012;11(2):363-365. doi:10.1111/j.1474-9726.2011.00779.x
Craniofacial abnormalities in Hutchinson-Gilford progeria syndrome
Ullrich NJ, Silvera VM, Campbell
2011
Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis
Candelario J, Borrego S, Reddy S, Comai L. Exp Cell Res. 2011;317(3):319-329. doi:10.1016/j.yexcr.2010.10.014
Computational image analysis of nuclear morphology associated with various nuclear-specific aging disorders
Choi S, Wang W, Ribeiro AJ, et al. Nucleus. 2011;2(6):570-579. doi:10.4161/nucl.2.6.17798
Hutchinson-Gilford progeria is a skeletal dysplasia
Gordon CM, Gordon LB, Snyder BD, et al.. J Bone Miner Res. 2011;26(7):1670-1679. doi:10.1002/jbmr.392
Age-dependent loss of MMP-3 in Hutchinson-Gilford progeria syndrome
Harten IA, Zahr RS, Lemire JM, et al. J Gerontol A Biol Sci Med Sci. 2011;66(11):1201-1207. doi:10.1093/gerona/glr137
The defective nuclear lamina in Hutchinson-gilford progeria syndrome disrupts the nucleocytoplasmic Ran gradient and inhibits nuclear localization of Ubc9
Kelley JB, Datta S, Snow CJ, et al. Mol Cell Biol. 2011;31(16):3378-3395. doi:10.1128/MCB.05087-11
‘Relax and Repair’ to restrain aging
Krishnan V, Liu B, Zhou Z. Aging (Albany NY). 2011;3(10):943-954. doi:10.18632/aging.100399
Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice
Krishnan V, Chow MZ, Wang Z, et al. Proc Natl Acad Sci U S A. 2011;108(30):12325-12330. doi:10.1073/pnas.1102789108
DNA-damage accumulation and replicative arrest in Hutchinson-Gilford progeria syndrome
Musich PR, Zou Y. Biochem Soc Trans. 2011;39(6):1764-1769. doi:10.1042/BST20110687
Structure and stability of the lamin A tail domain and HGPS mutant
Qin Z, Kalinowski A, Dahl KN, Buehler MJ. J Struct Biol. 2011;175(3):425-433. doi:10.1016/j.jsb.2011.05.015
Protein farnesylation inhibitors cause donut-shaped cell nuclei attributable to a centrosome separation defect
Verstraeten VL, Peckham LA, Olive M, et al. Proc Natl Acad Sci U S A. 2011;108(12):4997-5002. doi:10.1073/pnas.1019532108
2010
Mechanobiology and the microcirculation: cellular, nuclear and fluid mechanics
Dahl KN, Kalinowski A, Pekkan K. Microcirculation. 2010;17(3):179-191. doi:10.1111/j.1549-8719.2009.00016.x
Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging
Olive M, Harten I, Mitchell R, et al. Arterioscler Thromb Vasc Biol. 2010;30(11):2301-2309. doi:10.1161/ATVBAHA.110.209460
2009
Association of progerin-interactive partner proteins with lamina proteins: Mel18 is associated with emerin in HGPS
Ju WN, Brown WT, Zhong N. Beijing Da Xue Xue Bao Yi Xue Ban. 2009;41(4):397-401.
Altered nuclear functions in progeroid syndromes: a paradigm for aging research
Li B, Jog S, Candelario J, Reddy S, Comai L. ScientificWorldJournal. 2009;9:1449-1462. Published 2009 Dec 16. doi:10.1100/tsw.2009.159
2008
Perturbation of wild-type lamin A metabolism results in a progeroid phenotype
Candelario J, Sudhakar S, Navarro S, Reddy S, Comai L. Aging Cell. 2008;7(3):355-367. doi:10.1111/j.1474-9726.2008.00393.x
Involvement of xeroderma pigmentosum group A (XPA) in progeria arising from defective maturation of prelamin A
Liu Y, Wang Y, Rusinol AE, et al. FASEB J. 2008;22(2):603-611. doi:10.1096/fj.07-8598com
Towards an integrated understanding of the structure and mechanics of the cell nucleus
Rowat AC, Lammerding J, Herrmann H, Aebi U. Bioessays. 2008;30(3):226-236. doi:10.1002/bies.20720
Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing
Scaffidi P, Misteli T. Nat Cell Biol. 2008;10(4):452-459. doi:10.1038/ncb1708
Increased mechanosensitivity and nuclear stiffness in Hutchinson-Gilford progeria cells: effects of farnesyltransferase inhibitors
Verstraeten VL, Ji JY, Cummings KS, Lee RT, Lammerding J. Aging Cell. 2008;7(3):383-393. doi:10.1111/j.1474-9726.2008.00382.x
Eliminating the synthesis of mature lamin A reduces disease phenotypes in mice carrying a Hutchinson-Gilford progeria syndrome allele
Yang SH, Qiao X, Farber E, Chang SY, Fong LG, Young SG. J Biol Chem. 2008;283(11):7094-7099. doi:10.1074/jbc.M708138200
Treatment with a farnesyltransferase inhibitor improves survival in mice with a Hutchinson-Gilford progeria syndrome mutation
Yang SH, Qiao X, Fong LG, Young SG. Biochim Biophys Acta. 2008;1781(1-2):36-39. doi:10.1016/j.bbalip.2007.11.003
2007
Disease progression in Hutchinson-Gilford progeria syndrome: impact on growth and development
Gordon LB, McCarten KM, Giobbie-Hurder A, et al. Pediatrics. 2007;120(4):824-833. doi:10.1542/peds.2007-1357
Cell nuclei spin in the absence of lamin b1
Ji JY, Lee RT, Vergnes L, et al. J Biol Chem. 2007;282(27):20015-20026. doi:10.1074/jbc.M611094200
The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin
McClintock D, Ratner D, Lokuge M, et al. PLoS One. 2007;2(12):e1269. Published 2007 Dec 5. doi:10.1371/journal.pone.0001269
Increased progerin expression associated with unusual LMNA mutations causes severe progeroid syndromes
Moulson CL, Fong LG, Gardner JM, et al. Hum Mutat. 2007;28(9):882-889. doi:10.1002/humu.20536
2006
Prelamin A and lamin A appear to be dispensable in the nuclear lamina
Fong LG, Ng JK, Lammerding J, et al. J Clin Invest. 2006;116(3):743-752. doi:10.1172/JCI27125
Aggrecan expression is substantially and abnormally upregulated in Hutchinson-Gilford Progeria Syndrome dermal fibroblasts
Lemire JM, Patis C, Gordon LB, Sandy JD, Toole BP, Weiss AS. Mech Ageing Dev. 2006;127(8):660-669. doi:10.1016/j.mad.2006.03.004
Nuclear lamins, diseases and aging
Mattout A, Dechat T, Adam SA, Goldman RD, Gruenbaum Y. Curr Opin Cell Biol. 2006;18(3):335-341. doi:10.1016/j.ceb.2006.03.007
Hutchinson-Gilford progeria mutant lamin A primarily targets human vascular cells as detected by an anti-Lamin A G608G antibody
McClintock D, Gordon LB, Djabali K. Proc Natl Acad Sci U S A. 2006;103(7):2154-2159. doi:10.1073/pnas.0511133103
Protein farnesyltransferase inhibitors and progeria
Meta M, Yang SH, Bergo MO, Fong LG, Young SG. Trends Mol Med. 2006;12(10):480-487. doi:10.1016/j.molmed.2006.08.006
Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging
Shumaker DK, Dechat T, Kohlmaier A, et al. Proc Natl Acad Sci U S A. 2006;103(23):8703-8708. doi:10.1073/pnas.0602569103
Prelamin A farnesylation and progeroid syndromes
Young SG, Meta M, Yang SH, Fong LG. J Biol Chem. 2006;281(52):39741-39745. doi:10.1074/jbc.R600033200
2005
Incomplete processing of mutant lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition
Glynn MW, Glover TW. Hum Mol Genet. 2005;14(20):2959-2969. doi:10.1093/hmg/ddi326
Reduced adiponectin and HDL cholesterol without elevated C-reactive protein: clues to the biology of premature atherosclerosis in Hutchinson-Gilford Progeria Syndrome
Gordon LB, Harten IA, Patti ME, Lichtenstein AH. J Pediatr. 2005;146(3):336-341. doi:10.1016/j.jpeds.2004.10.064
Correction of cellular phenotypes of Hutchinson-Gilford Progeria cells by RNA interference
Huang S, Chen L, Libina N, et al. Hum Genet. 2005;118(3-4):444-450. doi:10.1007/s00439-005-0051-7
Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson-Gilford progeria syndrome
Mallampalli MP, Huyer G, Bendale P, Gelb MH, Michaelis S. Proc Natl Acad Sci U S A. 2005;102(40):14416-14421. doi:10.1073/pnas.0503712102
Dermal fibroblasts in Hutchinson-Gilford progeria syndrome with the lamin A G608G mutation have dysmorphic nuclei and are hypersensitive to heat stress
Paradisi M, McClintock D, Boguslavsky RL, Pedicelli C, Worman HJ, Djabali K. BMC Cell Biol. 2005;6:27. Published 2005 Jun 27. doi:10.1186/1471-2121-6-27
Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes
Toth JI, Yang SH, Qiao X, et al. Proc Natl Acad Sci U S A. 2005;102(36):12873-12878. doi:10.1073/pnas.0505767102
Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation
Yang SH, Bergo MO, Toth JI, et al. Proc Natl Acad Sci U S A. 2005;102(29):10291-10296. doi:10.1073/pnas.0504641102
Prelamin A, Zmpste24, misshapen cell nuclei, and progeria–new evidence suggesting that protein farnesylation could be important for disease pathogenesis
Young SG, Fong LG, Michaelis S. J Lipid Res. 2005;46(12):2531-2558. doi:10.1194/jlr.R500011-JLR200
Novel progerin-interactive partner proteins hnRNP E1, EGF, Mel 18, and UBC9 interact with lamin A/C
Zhong N, Radu G, Ju W, Brown WT. Biochem Biophys Res Commun. 2005;338(2):855-861. doi:10.1016/j.bbrc.2005.10.020
2004
Genome-scale expression profiling of Hutchinson-Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis
Csoka AB, English SB, Simkevich CP, et al. Aging Cell. 2004;3(4):235-243. doi:10.1111/j.1474-9728.2004.00105.x
Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice
Fong LG, Ng JK, Meta M, et al. Proc Natl Acad Sci U S A. 2004;101(52):18111-18116. doi:10.1073/pnas.0408558102
Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome
Goldman RD, Shumaker DK, Erdos MR, et al. Proc Natl Acad Sci U S A. 2004;101(24):8963-8968. doi:10.1073/pnas.0402943101
2003
LMNA mutations in atypical Werner’s syndrome
Chen L, Lee L, Kudlow BA, et al. Lancet. 2003;362(9382):440-445. doi:10.1016/S0140-6736(03)14069-X
Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome
Eriksson M, Brown WT, Gordon LB, et al. Nature. 2003;423(6937):293-298. doi:10.1038/nature01629
Hyaluronan is not elevated in urine or serum in Hutchinson-Gilford Progeria Syndrome
Gordon LB, Harten IA, Calabro A, et al. Hum Genet. 2003;113(2):178-187. doi:10.1007/s00439-003-0958-9
2002
Searching for clues to premature aging
Uitto J. Trends Endocrinol Metab. 2002;13(4):140-141. doi:10.1016/s1043-2760(02)00595-7