Select Page

PRF Research Program

Related Publications

The Progeria Research Foundation (PRF) plays a vital role in promoting Progeria research by leading scientists around the world.  Many publications by these scientists acknowledge PRF’s programs.  By providing funding through grants; supplying material and data from the Cell and Tissue Bank, Medical and Research Database and the International Progeria Registry; publishing findings from clinical drug trials; and hosting scientific workshops where researchers can discuss their latest findings, PRF continues to drive the research that will eventually lead to a cure for Progeria.

Below is a list, by program, of the many publications that have acknowledged one or more of PRF’s research programs.

PRF Cell and Tissue Bank

Publications Utilizing Material from

The Progeria Research Foundation Cell and Tissue Bank

2025

Hutchinson-Gilford Progeria Syndrome

Gordon LB, Brown WT, Collins FS. 2003 Dec 12 [Updated 2025 Mar 13]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025.

Circular RNA Telomerase Reverses Endothelial Senescence in Progeria

Qin W, Castillo KD, Li H, et al. Aging Cell. Published online February 23, 2025. doi:10.1111/acel.70021

Adenine base editing rescues pathogenic phenotypes in tissue engineered vascular model of Hutchinson-Gilford progeria syndrome

Abutaleb NO, Gao XD, Bedapudi A, et al. APL Bioeng. 2025;9(1):016110. Published 2025 Feb 26. doi:10.1063/5.0244026


2024

Aged-vascular niche hinders osteogenesis of mesenchymal stem cells through paracrine repression of Wnt-axis

Fleischhacker V, Milosic F, Bricelj M, et al. Aging Cell. 2024;23(6):e14139. doi:10.1111/acel.14139

Aberrant migration features in primary skin fibroblasts of Huntington’s disease patients hold potential for unraveling disease progression using an image based machine learning tool

Gharaba S, Shalem A, Paz O, Muchtar N, Wolf L, Weil M. Comput Biol Med. 2024;180:108970. doi:10.1016/j.compbiomed.2024.108970

Enhancing Cellular Homeostasis: Targeted Botanical Compounds Boost Cellular Health Functions in Normal and Premature Aging Fibroblasts

Hartinger R, Singh K, Leverett J, Djabali K. Biomolecules. 2024;14(10):1310. Published 2024 Oct 16. doi:10.3390/biom14101310

The NLRP3 inhibitor Dapansutrile improves the therapeutic action of lonafarnib on progeroid mice

Muela-Zarzuela I, Suarez-Rivero JM, Boy-Ruiz D, et al. Aging Cell. 2024;23(9):e14272. doi:10.1111/acel.14272

Progeria-based vascular model identifies networks associated with cardiovascular aging and disease

Ngubo M, Chen Z, McDonald D, et al. Aging Cell. 2024;23(7):e14150. doi:10.1111/acel.14150

Angiopoietin-2 reverses endothelial cell dysfunction in progeria vasculature

Vakili S, Izydore EK, Losert L, et al. Aging Cell. 2025;24(2):e14375. doi:10.1111/acel.14375

Progerin mRNA expression in non-HGPS patients is correlated with widespread shifts in transcript isoforms

Yu R, Xue H, Lin W, Collins FS, Mount SM, Cao K. NAR Genom Bioinform. 2024;6(3):lqae115. Published 2024 Aug 29. doi:10.1093/nargab/lqae115

Coaching ribosome biogenesis from the nuclear periphery

Zhuang Y, Guo X, Razorenova OV, Miles CE, Zhao W, Shi X. Preprint. bioRxiv. 2024;2024.06.21.597078. Published 2024 Jun 22. doi:10.1101/2024.06.21.597078


2023

Lonafarnib and everolimus reduce pathology in iPSC-derived tissue engineered blood vessel model of Hutchinson-Gilford Progeria Syndrome

Abutaleb NO, Atchison L, Choi L, et al. Sci Rep. 2023;13(1):5032. Published 2023 Mar 28. doi:10.1038/s41598-023-32035-3

Aging Model for Analyzing Drug-Induced Proarrhythmia Risks Using Cardiomyocytes Differentiated from Progeria-Patient-Derived Induced Pluripotent Stem Cells

Daily N, Elson J, Wakatsuki T. Int J Mol Sci. 2023;24(15):11959. Published 2023 Jul 26. doi:10.3390/ijms241511959

Ghrelin delays premature aging in Hutchinson-Gilford progeria syndrome

Ferreira-Marques M, Carvalho A, Franco AC, et al. Aging Cell. 2023;22(12):e13983. doi:10.1111/acel.13983

Perturbed actin cap as a new personalized biomarker in primary fibroblasts of Huntington’s disease patients

Gharaba S, Paz O, Feld L, et al. Front Cell Dev Biol. 2023;11:1013721. Published 2023 Jan 18. doi:10.3389/fcell.2023.1013721

Plasma Progerin in Patients With Hutchinson-Gilford Progeria Syndrome: Immunoassay Development and Clinical Evaluation

Gordon LB, Norris W, Hamren S, et al. Circulation. 2023;147(23):1734-1744. doi:10.1161/CIRCULATIONAHA.122.060002

Impact of Combined Baricitinib and FTI Treatment on Adipogenesis in Hutchinson-Gilford Progeria Syndrome and Other Lipodystrophic Laminopathies

Hartinger R, Lederer EM, Schena E, Lattanzi G, Djabali K. Cells. 2023;12(10):1350. Published 2023 May 9. doi:10.3390/cells12101350

Lonafarnib improves cardiovascular function and survival in a mouse model of Hutchinson-Gilford progeria syndrome

Murtada SI, Mikush N, Wang M, et al. Elife. 2023;12:e82728. Published 2023 Mar 17. doi:10.7554/eLife.82728

The farnesyl transferase inhibitor (FTI) lonafarnib improves nuclear morphology in ZMPSTE24-deficient fibroblasts from patients with the progeroid disorder MAD-B

Odinammadu KO, Shilagardi K, Tuminelli K, Judge DP, Gordon LB, Michaelis S. Nucleus. 2023;14(1):2288476. doi:10.1080/19491034.2023.2288476

Hutchinson-Gilford progeria patient-derived cardiomyocyte model of carrying LMNA gene variant c.1824 C > T

Perales S, Sigamani V, Rajasingh S, Czirok A, Rajasingh J. Cell Tissue Res. 2023;394(1):189-207. doi:10.1007/s00441-023-03813-2

Remodeling of the Cardiac Extracellular Matrix Proteome During Chronological and Pathological Aging

Santinha D, Vilaça A, Estronca L, et al. Mol Cell Proteomics. 2024;23(1):100706. doi:10.1016/j.mcpro.2023.100706

Activation of endoplasmic reticulum stress in premature aging via the inner nuclear membrane protein SUN2

Vidak S, Serebryannyy LA, Pegoraro G, Misteli T. Cell Rep. 2023;42(5):112534. doi:10.1016/j.celrep.2023.112534

Unique progerin C-terminal peptide ameliorates Hutchinson-Gilford progeria syndrome phenotype by rescuing BUBR1

Zhang N, Hu Q, Sui T, et al. [published correction appears in Nat Aging. 2023 Jun;3(6):752. doi: 10.1038/s43587-023-00427-9]. Nat Aging. 2023;3(2):185-201. doi:10.1038/s43587-023-00361-w

Senotherapeutic peptide treatment reduces biological age and senescence burden in human skin models

Zonari A, Brace LE, Al-Katib K, et al. [published correction appears in NPJ Aging. 2024 Feb 15;10(1):14. doi: 10.1038/s41514-024-00140-w]. NPJ Aging. 2023;9(1):10. Published 2023 May 22. doi:10.1038/s41514-023-00109-1


2022

Quantification of Farnesylated Progerin in Hutchinson-Gilford Progeria Patient Cells by Mass Spectrometry

Camafeita E, Jorge I, Rivera-Torres J, Andrés V, Vázquez J. Int J Mol Sci. 2022;23(19):11733. Published 2022 Oct 3. doi:10.3390/ijms231911733

SerpinE1 drives a cell-autonomous pathogenic signaling in Hutchinson-Gilford progeria syndrome

Catarinella G, Nicoletti C, Bracaglia A, et al. Cell Death Dis. 2022;13(8):737. Published 2022 Aug 26. doi:10.1038/s41419-022-05168-y

Clonal hematopoiesis is not prevalent in Hutchinson-Gilford progeria syndrome

Díez-Díez M, Amorós-Pérez M, de la Barrera J, et al. Geroscience. 2023;45(2):1231-1236. doi:10.1007/s11357-022-00607-2

MG132 Induces Progerin Clearance and Improves Disease Phenotypes in HGPS-like Patients’ Cells

Harhouri K, Cau P, Casey F, et al. Cells. 2022;11(4):610. Published 2022 Feb 10. doi:10.3390/cells11040610

Anti-hsa-miR-59 alleviates premature senescence associated with Hutchinson-Gilford progeria syndrome in mice

Hu Q, Zhang N, Sui T, et al. EMBO J. 2023;42(1):e110937. doi:10.15252/embj.2022110937

Combined alteration of lamin and nuclear morphology influences the localization of the tumor-associated factor AKTIP

La Torre M, Merigliano C, Maccaroni K, et al. J Exp Clin Cancer Res. 2022;41(1):273. Published 2022 Sep 13. doi:10.1186/s13046-022-02480-5

Establishment and Characterization of hTERT Immortalized Hutchinson-Gilford Progeria Fibroblast Cell Lines

Lin H, Mensch J, Haschke M, et al. Cells. 2022;11(18):2784. Published 2022 Sep 6. doi:10.3390/cells11182784

Impaired LEF1 Activation Accelerates iPSC-Derived Keratinocytes Differentiation in Hutchinson-Gilford Progeria Syndrome

Mao X, Xiong ZM, Xue H, et al. Int J Mol Sci. 2022;23(10):5499. Published 2022 May 14. doi:10.3390/ijms23105499

Modelling premature cardiac aging with induced pluripotent stem cells from a hutchinson-gilford Progeria Syndrome patient

Monnerat G, Kasai-Brunswick TH, Asensi KD, et al. Front Physiol. 2022;13:1007418. Published 2022 Nov 23. doi:10.3389/fphys.2022.1007418

Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate

Pfeifer CR, Tobin MP, Cho S, et al. Nucleus. 2022;13(1):129-143. doi:10.1080/19491034.2022.2045726

Transcriptional profiling of Hutchinson-Gilford Progeria syndrome fibroblasts reveals deficits in mesenchymal stem cell commitment to differentiation related to early events in endochondral ossification

San Martin R, Das P, Sanders JT, Hill AM, McCord RP. Elife. 2022;11:e81290. Published 2022 Dec 29. doi:10.7554/eLife.81290

Impact of MnTBAP and Baricitinib Treatment on Hutchinson-Gilford Progeria Fibroblasts

Vehns E, Arnold R, Djabali K. Pharmaceuticals (Basel). 2022;15(8):945. Published 2022 Jul 29. doi:10.3390/ph15080945

Achieving single nucleotide sensitivity in direct hybridization genome imaging

Wang Y, Cottle WT, Wang H, et al. Nat Commun. 2022;13(1):7776. Published 2022 Dec 15. doi:10.1038/s41467-022-35476-y

Vascular senescence in progeria: role of endothelial dysfunction

Xu Q, Mojiri A, Boulahouache L, Morales E, Walther BK, Cooke JP. Vascular senescence in progeria: role of endothelial dysfunction. Eur Heart J Open. 2022;2(4):oeac047. Published 2022 Jul 28. doi:10.1093/ehjopen/oeac047


2021

Baricitinib, a JAK-STAT Inhibitor, Reduces the Cellular Toxicity of the Farnesyltransferase Inhibitor Lonafarnib in Progeria Cells

Arnold R, Vehns E, Randl H, Djabali K. Int J Mol Sci. 2021;22(14):7474. Published 2021 Jul 12. doi:10.3390/ijms22147474

A targeted antisense therapeutic approach for Hutchinson-Gilford progeria syndrome

Erdos MR, Cabral WA, Tavarez UL, et al. Nat Med. 2021;27(3):536-545. doi:10.1038/s41591-021-01274-0

Self-assembly of multi-component mitochondrial nucleoids via phase separation

Feric M, Demarest TG, Tian J, Croteau DL, Bohr VA, Misteli T. EMBO J. 2021;40(6):e107165. doi:10.15252/embj.2020107165

Mechanisms of angiogenic incompetence in Hutchinson-Gilford progeria via downregulation of endothelial NOS

Gete YG, Koblan LW, Mao X, et al. Aging Cell. 2021;20(7):e13388. doi:10.1111/acel.13388

Inhibition of the NLRP3 inflammasome improves lifespan in animal murine model of Hutchinson-Gilford Progeria

González-Dominguez A, Montañez R, Castejón-Vega B, et al. EMBO Mol Med. 2021;13(10):e14012. doi:10.15252/emmm.202114012

Progerinin, an optimized progerin-lamin A binding inhibitor, ameliorates premature senescence phenotypes of Hutchinson-Gilford progeria syndrome

Kang SM, Yoon MH, Ahn J, et al. [published correction appears in Commun Biol. 2021 Mar 2;4(1):297. doi: 10.1038/s42003-021-01843-6.]. Commun Biol. 2021;4(1):5. Published 2021 Jan 4. doi:10.1038/s42003-020-01540-w

In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice

Koblan LW, Erdos MR, Wilson C, et al. Nature. 2021;589(7843):608-614. doi:10.1038/s41586-020-03086-7

Isoprenylcysteine Carboxylmethyltransferase-Based Therapy for Hutchinson-Gilford Progeria Syndrome

Marcos-Ramiro B, Gil-Ordóñez A, Marín-Ramos NI, et al. ACS Cent Sci. 2021;7(8):1300-1310. doi:10.1021/acscentsci.0c01698

Telomerase therapy reverses vascular senescence and extends lifespan in progeria mice

Mojiri A, Walther BK, Jiang C, et al. Eur Heart J. 2021;42(42):4352-4369. doi:10.1093/eurheartj/ehab547

Impact of Progerin Expression on Adipogenesis in Hutchinson-Gilford Progeria Skin-Derived Precursor Cells

Najdi F, Krüger P, Djabali K. Cells. 2021;10(7):1598. Published 2021 Jun 25. doi:10.3390/cells10071598

Systematic screening identifies therapeutic antisense oligonucleotides for Hutchinson-Gilford progeria syndrome

Puttaraju M, Jackson M, Klein S, et al. [published correction appears in Nat Med. 2021 Jul;27(7):1309. doi: 10.1038/s41591-021-01415-5.]. Nat Med. 2021;27(3):526-535. doi:10.1038/s41591-021-01262-4

Nuclear Pore Complexes Cluster in Dysmorphic Nuclei of Normal and Progeria Cells during Replicative Senescence

Röhrl JM, Arnold R, Djabali K. Cells. 2021;10(1):153. Published 2021 Jan 14. doi:10.3390/cells10010153


2020

iPSC-Derived Endothelial Cells Affect Vascular Function in a Tissue-Engineered Blood Vessel Model of Hutchinson-Gilford Progeria Syndrome

Atchison L, Abutaleb NO, Snyder-Mounts E, et al. Stem Cell Reports. 2020;14(2):325-337. doi:10.1016/j.stemcr.2020.01.005

Direct reprogramming of human smooth muscle and vascular endothelial cells reveals defects associated with aging and Hutchinson-Gilford progeria syndrome

Bersini S, Schulte R, Huang L, Tsai H, Hetzer MW. Elife. 2020;9:e54383. Published 2020 Sep 8. doi:10.7554/eLife.54383

Phosphorylated Lamin A/C in the Nuclear Interior Binds Active Enhancers Associated with Abnormal Transcription in Progeria

Ikegami K, Secchia S, Almakki O, Lieb JD, Moskowitz IP. Dev Cell. 2020;52(6):699-713.e11. doi:10.1016/j.devcel.2020.02.011

Epigenetic deregulation of lamina-associated domains in Hutchinson-Gilford progeria syndrome

Köhler F, Bormann F, Raddatz G, et al. Genome Med. 2020;12(1):46. Published 2020 May 25. doi:10.1186/s13073-020-00749-y

Chromatin and Cytoskeletal Tethering Determine Nuclear Morphology in Progerin-Expressing Cells

Lionetti MC, Bonfanti S, Fumagalli MR, et al. Biophys J. 2020;118(9):2319-2332. doi:10.1016/j.bpj.2020.04.001

Peroxisomal abnormalities and catalase deficiency in Hutchinson-Gilford Progeria Syndrome

Mao X, Bharti P, Thaivalappil A, Cao K. Aging (Albany NY). 2020;12(6):5195-5208. doi:10.18632/aging.102941

SAMMY-seq reveals early alteration of heterochromatin and deregulation of bivalent genes in Hutchinson-Gilford Progeria Syndrome

Sebestyén E, Marullo F, Lucini F, et al. Nat Commun. 2020;11(1):6274. Published 2020 Dec 8. doi:10.1038/s41467-020-20048-9

PML2-mediated thread-like nuclear bodies mark late senescence in Hutchinson-Gilford progeria syndrome

Wang M, Wang L, Qian M, et al. Aging Cell. 2020;19(6):e13147. doi:10.1111/acel.13147

Targeting RAS-converting enzyme 1 overcomes senescence and improves progeria-like phenotypes of ZMPSTE24 deficiency

Yao H, Chen X, Kashif M, et al. Aging Cell. 2020;19(8):e13200. doi:10.1111/acel.13200


2019

Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging

Chang W, Wang Y, Luxton GWG, Östlund C, Worman HJ, Gundersen GG. Proc Natl Acad Sci U S A. 2019;116(9):3578-3583. doi:10.1073/pnas.1809683116

Transient introduction of human telomerase mRNA improves hallmarks of progeria cells

Li Y, Zhou G, Bruno IG, et al. Aging Cell. 2019;18(4):e12979. doi:10.1111/acel.12979

Inhibition of JAK-STAT Signaling with Baricitinib Reduces Inflammation and Improves Cellular Homeostasis in Progeria Cells

Liu C, Arnold R, Henriques G, Djabali K. Cells. 2019;8(10):1276. Published 2019 Oct 18. doi:10.3390/cells8101276

Dysfunction of iPSC-derived endothelial cells in human Hutchinson-Gilford progeria syndrome

Matrone G, Thandavarayan RA, Walther BK, Meng S, Mojiri A, Cooke JP. Cell Cycle. 2019;18(19):2495-2508. doi:10.1080/15384101.2019.1651587

Metabolomic profiling suggests systemic signatures of premature aging induced by Hutchinson-Gilford progeria syndrome

Monnerat G, Evaristo GPC, Evaristo JAM, et al. Metabolomics. 2019;15(7):100. Published 2019 Jun 28. doi:10.1007/s11306-019-1558-6

Analysis of somatic mutations identifies signs of selection during in vitro aging of primary dermal fibroblasts

Narisu N, Rothwell R, Vrtačnik P, et al. Aging Cell. 2019;18(6):e13010. doi:10.1111/acel.13010

Restoring extracellular matrix synthesis in senescent stem cells

Rong N, Mistriotis P, Wang X, et al. FASEB J. 2019;33(10):10954-10965. doi:10.1096/fj.201900377R


2018

Smurf2 regulates stability and the autophagic-lysosomal turnover of lamin A and its disease-associated form progerin

Borroni AP, Emanuelli A, Shah PA, et al. Aging Cell. 2018;17(2):e12732. doi:10.1111/acel.12732

Progerin phosphorylation in interphase is lower and less mechanosensitive than lamin-A,C in iPS-derived mesenchymal stem cells

Cho S, Abbas A, Irianto J, et al. Nucleus. 2018;9(1):230-245. doi:10.1080/19491034.2018.1460185

Diminished Canonical β-Catenin Signaling During Osteoblast Differentiation Contributes to Osteopenia in Progeria

Choi JY, Lai JK, Xiong ZM, et al. J Bone Miner Res. 2018;33(11):2059-2070. doi:10.1002/jbmr.3549

Everolimus rescues multiple cellular defects in laminopathy-patient fibroblasts

DuBose AJ, Lichtenstein ST, Petrash NM, Erdos MR, Gordon LB, Collins FS. [published correction appears in Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):E4140. doi: 10.1073/pnas.1805694115.]. Proc Natl Acad Sci U S A. 2018;115(16):4206-4211. doi:10.1073/pnas.1802811115

Predicting age from the transcriptome of human dermal fibroblasts

Fleischer JG, Schulte R, Tsai HH, et al. Genome Biol. 2018;19(1):221. Published 2018 Dec 20. doi:10.1186/s13059-018-1599-6

Targeting the phospholipase A2 receptor ameliorates premature aging phenotypes

Griveau A, Wiel C, Le Calvé B, et al. Aging Cell. 2018;17(6):e12835. doi:10.1111/acel.12835

Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies

Horvath S, Oshima J, Martin GM, et al. Aging (Albany NY). 2018;10(7):1758-1775. doi:10.18632/aging.101508

A Cell-Intrinsic Interferon-like Response Links Replication Stress to Cellular Aging Caused by Progerin

Kreienkamp R, Graziano S, Coll-Bonfill N, et al. Cell Rep. 2018;22(8):2006-2015. doi:10.1016/j.celrep.2018.01.090

Analyses of LMNA-negative juvenile progeroid cases confirms biallelic POLR3A mutations in Wiedemann-Rautenstrauch-like syndrome and expands the phenotypic spectrum of PYCR1 mutations

Lessel D, Ozel AB, Campbell SE, et al. Hum Genet. 2018;137(11-12):921-939. doi:10.1007/s00439-018-1957-1

Autophagic Removal of Farnesylated Carboxy-Terminal Lamin Peptides

Lu X, Djabali K. Cells. 2018;7(4):33. Published 2018 Apr 23. doi:10.3390/cells7040033

p53 isoforms regulate premature aging in human cells

von Muhlinen N, Horikawa I, Alam F, et al. Oncogene. 2018;37(18):2379-2393. doi:10.1038/s41388-017-0101-3


2017

SIRPA-Inhibited, Marrow-Derived Macrophages Engorge, Accumulate, and Differentiate in Antibody-Targeted Regression of Solid Tumors

Alvey CM, Spinler KR, Irianto J, et al. Curr Biol. 2017;27(14):2065-2077.e6. doi:10.1016/j.cub.2017.06.005

Nucleolar expansion and elevated protein translation in premature aging

Buchwalter A, Hetzer MW. Nat Commun. 2017;8(1):328. Published 2017 Aug 30. doi:10.1038/s41467-017-00322-z

Reprogramming progeria fibroblasts re-establishes a normal epigenetic landscape

Chen Z, Chang WY, Etheridge A, et al. Aging Cell. 2017;16(4):870-887. doi:10.1111/acel.12621

Intermittent treatment with farnesyltransferase inhibitor and sulforaphane improves cellular homeostasis in Hutchinson-Gilford progeria fibroblasts

Gabriel D, Shafry DD, Gordon LB, Djabali K. Oncotarget. 2017;8(39):64809-64826. Published 2017 Jul 18. doi:10.18632/oncotarget.19363

Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes

Hilton BA, Liu J, Cartwright BM, et al. FASEB J. 2017;31(9):3882-3893. doi:10.1096/fj.201700014R

Cross-linked matrix rigidity and soluble retinoids synergize in nuclear lamina regulation of stem cell differentiation

Ivanovska IL, Swift J, Spinler K, Dingal D, Cho S, Discher DE. Mol Biol Cell. 2017;28(14):2010-2022. doi:10.1091/mbc.E17-01-0010

Identification of novel PDEδ interacting proteins

Küchler P, Zimmermann G, Winzker M, Janning P, Waldmann H, Ziegler S. Bioorg Med Chem. 2018;26(8):1426-1434. doi:10.1016/j.bmc.2017.08.033

Telomerase mRNA Reverses Senescence in Progeria Cells

Li Y, Zhou G, Bruno IG, Cooke JP. J Am Coll Cardiol. 2017;70(6):804-805. doi:10.1016/j.jacc.2017.06.017

Metformin alleviates ageing cellular phenotypes in Hutchinson-Gilford progeria syndrome dermal fibroblasts

Park SK, Shin OS. Exp Dermatol. 2017;26(10):889-895. doi:10.1111/exd.13323

Nucleoplasmic lamins define growth-regulating functions of lamina-associated polypeptide 2α in progeria cells

Vidak S, Georgiou K, Fichtinger P, Naetar N, Dechat T, Foisner R. J Cell Sci. 2018;131(3):jcs208462. Published 2018 Feb 8. doi:10.1242/jcs.208462


2016

A novel somatic mutation achieves partial rescue in a child with Hutchinson-Gilford progeria syndrome

Bar DZ, Arlt MF, Brazier JF, et al. J Med Genet. 2017;54(3):212-216. doi:10.1136/jmedgenet-2016-104295

Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson-Gilford progeria fibroblasts

Eisch V, Lu X, Gabriel D, Djabali K. Oncotarget. 2016;7(17):24700-24718. doi:10.18632/oncotarget.8267

Temsirolimus Partially Rescues the Hutchinson-Gilford Progeria Cellular Phenotype

Gabriel D, Gordon LB, Djabali K. PLoS One. 2016;11(12):e0168988. Published 2016 Dec 29. doi:10.1371/journal.pone.0168988

Vitamin D receptor signaling improves Hutchinson-Gilford progeria syndrome cellular phenotypes

Kreienkamp R, Croke M, Neumann MA, et al. Oncotarget. 2016;7(21):30018-30031. doi:10.18632/oncotarget.9065

NANOG Reverses the Myogenic Differentiation Potential of Senescent Stem Cells by Restoring ACTIN Filamentous Organization and SRF-Dependent Gene Expression

Mistriotis P, Bajpai VK, Wang X, et al. Stem Cells. 2017;35(1):207-221. doi:10.1002/stem.2452

Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase

Moiseeva O, Lopes-Paciencia S, Huot G, Lessard F, Ferbeyre G. Aging (Albany NY). 2016;8(2):366-381. doi:10.18632/aging.100903

A mutation abolishing the ZMPSTE24 cleavage site in prelamin A causes a progeroid disorder

Wang Y, Lichter-Konecki U, Anyane-Yeboa K, et al. J Cell Sci. 2016;129(10):1975-1980. doi:10.1242/jcs.187302

Comparing lamin proteins post-translational relative stability using a 2A peptide-based system reveals elevated resistance of progerin to cellular degradation

Wu D, Yates PA, Zhang H, Cao K. Nucleus. 2016;7(6):585-596.

doi:10.1080/19491034.2016.1260803

Loss of H3K9me3 Correlates with ATM Activation and Histone H2AX Phosphorylation Deficiencies in Hutchinson-Gilford Progeria Syndrome

Zhang H, Sun L, Wang K, et al. PLoS One. 2016;11(12):e0167454. Published 2016 Dec 1. doi:10.1371/journal.pone.0167454


2015

Nuclear stiffening and chromatin softening with progerin expression leads to an attenuated nuclear response to force

Booth EA, Spagnol ST, Alcoser TA, Dahl KN. Soft Matter. 2015;11(32):6412-6418. doi:10.1039/c5sm00521c

Lamin A Is an Endogenous SIRT6 Activator and Promotes SIRT6-Mediated DNA Repair

Ghosh S, Liu B, Wang Y, Hao Q, Zhou Z. Cell Rep. 2015;13(7):1396-1406. doi:10.1016/j.celrep.2015.10.006

Insights into the role of immunosenescence during varicella zoster virus infection (shingles) in the aging cell model

Kim JA, Park SK, Kumar M, Lee CH, Shin OS. Oncotarget. 2015;6(34):35324-35343. doi:10.18632/oncotarget.6117

Proliferation of progeria cells is enhanced by lamina-associated polypeptide 2α (LAP2α) through expression of extracellular matrix proteins

Vidak S, Kubben N, Dechat T, Foisner R. Genes Dev. 2015;29(19):2022-2036. doi:10.1101/gad.263939.115

Phenotype-Dependent Coexpression Gene Clusters: Application to Normal and Premature Ageing

Wang K, Das A, Xiong ZM, Cao K, Hannenhalli S. IEEE/ACM Trans Comput Biol Bioinform. 2015;12(1):30-39. doi:10.1109/TCBB.2014.2359446

Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria

Xiong ZM, Choi JY, Wang K, et al. Aging Cell. 2016;15(2):279-290. doi:10.1111/acel.12434


2014

Sulforaphane enhances progerin clearance in Hutchinson-Gilford progeria fibroblasts

Gabriel D, Roedl D, Gordon LB, Djabali K. Aging Cell. 2015;14(1):78-91. doi:10.1111/acel.12300

Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly(ADP-ribose) polymerase 1

Zhang H, Xiong ZM, Cao K. Proc Natl Acad Sci U S A. 2014;111(22):E2261-E2270. doi:10.1073/pnas.1320843111


2013

Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model

Liu B, Wang Z, Zhang L, Ghosh S, Zheng H, Zhou Z. Nat Commun. 2013;4:1868. doi:10.1038/ncomms2885

Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome

McCord RP, Nazario-Toole A, Zhang H, et al. Genome Res. 2013;23(2):260-269. doi:10.1101/gr.138032.112

Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence

Swanson EC, Manning B, Zhang H, Lawrence JB. J Cell Biol. 2013;203(6):929-942. doi:10.1083/jcb.201306073

An inhibitory role of progerin in the gene induction network of adipocyte differentiation from iPS cells

Xiong ZM, LaDana C, Wu D, Cao K. Aging (Albany NY). 2013;5(4):288-303. doi:10.18632/aging.100550


2012

Automated image analysis of nuclear shape: what can we learn from a prematurely aged cell?

Driscoll MK, Albanese JL, Xiong ZM, Mailman M, Losert W, Cao K. Aging (Albany NY). 2012;4(2):119-132. doi:10.18632/aging.100434

Progeria: translational insights from cell biology

Gordon LB, Cao K, Collins FS. J Cell Biol. 2012;199(1):9-13. doi:10.1083/jcb.201207072

A proteomic study of Hutchinson-Gilford progeria syndrome: Application of 2D-chromotography in a premature aging disease

Wang L, Yang W, Ju W, et al. Biochem Biophys Res Commun. 2012;417(4):1119-1126. doi:10.1016/j.bbrc.2011.12.056

Naïve adult stem cells from patients with Hutchinson-Gilford progeria syndrome express low levels of progerin in vivo

Wenzel V, Roedl D, Gabriel D, et al. Biol Open. 2012;1(6):516-526. doi:10.1242/bio.20121149


2011

Comparison of constitutional and replication stress-induced genome structural variation by SNP array and mate-pair sequencing

Arlt MF, Ozdemir AC, Birkeland SR, Lyons RH Jr, Glover TW, Wilson TE. Genetics. 2011;187(3):675-683. doi:10.1534/genetics.110.124776

Hydroxyurea induces de novo copy number variants in human cells

Arlt MF, Ozdemir AC, Birkeland SR, Wilson TE, Glover TW. Proc Natl Acad Sci U S A. 2011;108(42):17360-17365. doi:10.1073/pnas.1109272108

Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts

Cao K, Blair CD, Faddah DA, et al. J Clin Invest. 2011;121(7):2833-2844. doi:10.1172/JCI43578

Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells

Cao K, Graziotto JJ, Blair CD, et al. Sci Transl Med. 2011;3(89):89ra58. doi:10.1126/scitranslmed.3002346

Computational image analysis of nuclear morphology associated with various nuclear-specific aging disorders

Choi S, Wang W, Ribeiro AJ, et al. Nucleus. 2011;2(6):570-579. doi:10.4161/nucl.2.6.17798

CTP: phosphocholine cytidylyltransferase α (CCTα) and lamins alter nuclear membrane structure without affecting phosphatidylcholine synthesis

Gehrig K, Ridgway ND. Biochim Biophys Acta. 2011;1811(6):377-385. doi:10.1016/j.bbalip.2011.04.001

Age-dependent loss of MMP-3 in Hutchinson-Gilford progeria syndrome

Harten IA, Zahr RS, Lemire JM, et al. J Gerontol A Biol Sci Med Sci. 2011;66(11):1201-1207. doi:10.1093/gerona/glr137

Low and high expressing alleles of the LMNA gene: implications for laminopathy disease development

Rodríguez S, Eriksson M. PLoS One. 2011;6(9):e25472. doi:10.1371/journal.pone.0025472

Stem cell depletion in Hutchinson-Gilford progeria syndrome

Rosengardten Y, McKenna T, Grochová D, Eriksson M. Aging Cell. 2011;10(6):1011-1020. doi:10.1111/j.1474-9726.2011.00743.x


2010

Defective lamin A-Rb signaling in Hutchinson-Gilford Progeria Syndrome and reversal by farnesyltransferase inhibition

Marji J, O’Donoghue SI, McClintock D, et al. PLoS One. 2010;5(6):e11132. Published 2010 Jun 15. doi:10.1371/journal.pone.0011132

Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging

Olive M, Harten I, Mitchell R, et al. Arterioscler Thromb Vasc Biol. 2010;30(11):2301-2309. doi:10.1161/ATVBAHA.110.209460

Effect of progerin on the accumulation of oxidized proteins in fibroblasts from Hutchinson Gilford progeria patients

Viteri G, Chung YW, Stadtman ER. Mech Ageing Dev. 2010;131(1):2-8. doi:10.1016/j.mad.2009.11.006


2009

Replication stress induces genome-wide copy number changes in human cells that resemble polymorphic and pathogenic variants

Arlt MF, Mulle JG, Schaibley VM, et al. Am J Hum Genet. 2009;84(3):339-350. doi:10.1016/j.ajhg.2009.01.024

Ageing-related chromatin defects through loss of the NURD complex

Pegoraro G, Kubben N, Wickert U, Göhler H, Hoffmann K, Misteli T. Nat Cell Biol. 2009;11(10):1261-1267. doi:10.1038/ncb1971


2008

Perturbation of wild-type lamin A metabolism results in a progeroid phenotype

Candelario J, Sudhakar S, Navarro S, Reddy S, Comai L. Aging Cell. 2008;7(3):355-367. doi:10.1111/j.1474-9726.2008.00393.x

Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing

Scaffidi P, Misteli T. Nat Cell Biol. 2008;10(4):452-459. doi:10.1038/ncb1708

Increased mechanosensitivity and nuclear stiffness in Hutchinson-Gilford progeria cells: effects of farnesyltransferase inhibitors

Verstraeten VL, Ji JY, Cummings KS, Lee RT, Lammerding J. Aging Cell. 2008;7(3):383-393. doi:10.1111/j.1474-9726.2008.00382.x


2007

A lamin A protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells

Cao K, Capell BC, Erdos MR, Djabali K, Collins FS. Proc Natl Acad Sci U S A. 2007;104(12):4949-4954. doi:10.1073/pnas.0611640104

Alterations in mitosis and cell cycle progression caused by a mutant lamin A known to accelerate human aging

Dechat T, Shimi T, Adam SA, et al. Proc Natl Acad Sci U S A. 2007;104(12):4955-4960. doi:10.1073/pnas.0700854104

Prelamin A processing and heterochromatin dynamics in laminopathies

Maraldi NM, Mattioli E, Lattanzi G, et al. Adv Enzyme Regul. 2007;47:154-167. doi:10.1016/j.advenzreg.2006.12.016

The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin

McClintock D, Ratner D, Lokuge M, et al. PLoS One. 2007;2(12):e1269. Published 2007 Dec 5. doi:10.1371/journal.pone.0001269

Increased progerin expression associated with unusual LMNA mutations causes severe progeroid syndromes

Moulson CL, Fong LG, Gardner JM, et al. Hum Mutat. 2007;28(9):882-889. doi:10.1002/humu.20536


2006

Aggrecan expression is substantially and abnormally upregulated in Hutchinson-Gilford Progeria Syndrome dermal fibroblasts

Lemire JM, Patis C, Gordon LB, Sandy JD, Toole BP, Weiss AS. Mech Ageing Dev. 2006;127(8):660-669. doi:10.1016/j.mad.2006.03.004

Hutchinson-Gilford progeria mutant lamin A primarily targets human vascular cells as detected by an anti-Lamin A G608G antibody

McClintock D, Gordon LB, Djabali K. Proc Natl Acad Sci U S A. 2006;103(7):2154-2159. doi:10.1073/pnas.0511133103


2005

Rescue of heterochromatin organization in Hutchinson-Gilford progeria by drug treatment

Columbaro M, Capanni C, Mattioli E, et al. Cell Mol Life Sci. 2005;62(22):2669-2678. doi:10.1007/s00018-005-5318-6

Incomplete processing of mutant lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition

Glynn MW, Glover TW. Hum Mol Genet. 2005;14(20):2959-2969. doi:10.1093/hmg/ddi326

Genomic instability in laminopathy-based premature aging

Liu B, Wang J, Chan KM, et al. Nat Med. 2005;11(7):780-785. doi:10.1038/nm1266

Novel progerin-interactive partner proteins hnRNP E1, EGF, Mel 18, and UBC9 interact with lamin A/C

Zhong N, Radu G, Ju W, Brown WT. Biochem Biophys Res Commun. 2005;338(2):855-861. doi:10.1016/j.bbrc.2005.10.020


2004

Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome

Goldman RD, Shumaker DK, Erdos MR, et al. Proc Natl Acad Sci U S A. 2004;101(24):8963-8968. doi:10.1073/pnas.0402943101


2003

Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome

Eriksson M, Brown WT, Gordon LB, et al. Nature. 2003;423(6937):293-298. doi:10.1038/nature01629

    PRF International Medical and Research Database for Progeria

    Publications Utilizing Data from

    The Progeria Research Foundation International Medical and Research Database

    2025

    Hutchinson-Gilford Progeria Syndrome

    Gordon LB, Brown WT, Collins FS. 2003 Dec 12 [Updated 2025 Mar 13]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025.


    2024

    Intervention for critical aortic stenosis in Hutchinson-Gilford progeria syndrome

    Gordon LB, Basso S, Maestranzi J, et al. Front Cardiovasc Med. 2024;11:1356010. Published 2024 Apr 25. doi:10.3389/fcvm.2024.1356010


    2023

    Plasma Progerin in Patients With Hutchinson-Gilford Progeria Syndrome: Immunoassay Development and Clinical Evaluation

    Gordon LB, Norris W, Hamren S, et al. Circulation. 2023;147(23):1734-1744. doi:10.1161/CIRCULATIONAHA.122.060002

    The farnesyl transferase inhibitor (FTI) lonafarnib improves nuclear morphology in ZMPSTE24-deficient fibroblasts from patients with the progeroid disorder MAD-B

    Odinammadu KO, Shilagardi K, Tuminelli K, Judge DP, Gordon LB, Michaelis S. Nucleus. 2023;14(1):2288476. doi:10.1080/19491034.2023.2288476


    2022

    Clonal hematopoiesis is not prevalent in Hutchinson-Gilford progeria syndrome

    Díez-Díez M, Amorós-Pérez M, de la Barrera J, et al. Geroscience. 2023;45(2):1231-1236. doi:10.1007/s11357-022-00607-2

    Sample size determination for the association between longitudinal and time-to-event outcomes using the joint modeling time-dependent slopes parameterization

    LeClair J, Massaro J, Sverdlov O, Gordon L, Tripodis Y. Stat Med. 2022;41(30):5810-5829. doi:10.1002/sim.9595


    2021

    A novel homozygous synonymous variant further expands the phenotypic spectrum of POLR3A-related pathologies

    Lessel D, Rading K, Campbell SE, et al. Am J Med Genet A. 2022;188(1):216-223. doi:10.1002/ajmg.a.62525


    2018

    Everolimus rescues multiple cellular defects in laminopathy-patient fibroblasts

    DuBose AJ, Lichtenstein ST, Petrash NM, Erdos MR, Gordon LB, Collins FS. [published correction appears in Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):E4140. doi: 10.1073/pnas.1805694115]. Proc Natl Acad Sci U S A. 2018;115(16):4206-4211. doi:10.1073/pnas.1802811115

    Association of Lonafarnib Treatment vs No Treatment With Mortality Rate in Patients With Hutchinson-Gilford Progeria Syndrome

    Gordon LB, Shappell H, Massaro J, et al. JAMA. 2018;319(16):1687-1695. doi:10.1001/jama.2018.3264

    Analyses of LMNA-negative juvenile progeroid cases confirms biallelic POLR3A mutations in Wiedemann-Rautenstrauch-like syndrome and expands the phenotypic spectrum of PYCR1 mutations

    Lessel D, Ozel AB, Campbell SE, et al. Hum Genet. 2018;137(11-12):921-939. doi:10.1007/s00439-018-1957-1


    2017

    Ophthalmologic Features of Progeria

    Mantagos IS, Kleinman ME, Kieran MW, Gordon LB. Am J Ophthalmol. 2017;182:126-132. doi:10.1016/j.ajo.2017.07.020


    2016

    A novel somatic mutation achieves partial rescue in a child with Hutchinson-Gilford progeria syndrome

    Bar DZ, Arlt MF, Brazier JF, et al. J Med Genet. 2017;54(3):212-216. doi:10.1136/jmedgenet-2016-104295

    Clinical Trial of the Protein Farnesylation Inhibitors Lonafarnib, Pravastatin, and Zoledronic Acid in Children With Hutchinson-Gilford Progeria Syndrome

    Gordon LB, Kleinman ME, Massaro J, et al. Circulation. 2016;134(2):114-125. doi:10.1161/CIRCULATIONAHA.116.022188

    Cardiac electrical defects in progeroid mice and Hutchinson-Gilford progeria syndrome patients with nuclear lamina alterations

    Rivera-Torres J, Calvo CJ, Llach A, et al. Proc Natl Acad Sci U S A. 2016;113(46):E7250-E7259. doi:10.1073/pnas.1603754113


    2015

    Hutchinson-Gilford progeria syndrome

    Ullrich NJ, Gordon LB. Handb Clin Neurol. 2015;132:249-264. doi:10.1016/B978-0-444-62702-5.00018-4


    2014

    Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome

    Gordon LB, Massaro J, D’Agostino RB Sr, et al. Circulation. 2014;130(1):27-34. doi:10.1161/CIRCULATIONAHA.113.008285

    Initial cutaneous manifestations of Hutchinson-Gilford progeria syndrome

    Rork JF, Huang JT, Gordon LB, Kleinman M, Kieran MW, Liang MG. Pediatr Dermatol. 2014;31(2):196-202. doi:10.1111/pde.12284


    2013

    Imaging characteristics of cerebrovascular arteriopathy and stroke in Hutchinson-Gilford progeria syndrome

    Silvera VM, Gordon LB, Orbach DB, Campbell SE, Machan JT, Ullrich NJ. AJNR Am J Neuroradiol. 2013;34(5):1091-1097. doi:10.3174/ajnr.A3341

    Neurologic features of Hutchinson-Gilford progeria syndrome after lonafarnib treatment

    Ullrich NJ, Kieran MW, Miller DT, et al. Neurology. 2013;81(5):427-430. doi:10.1212/WNL.0b013e31829d85c0


    2012

    Mechanisms of premature vascular aging in children with Hutchinson-Gilford progeria syndrome

    Gerhard-Herman M, Smoot LB, Wake N, et al. Hypertension. 2012;59(1):92-97. doi:10.1161/HYPERTENSIONAHA.111.180919

    Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome

    Gordon LB, Kleinman ME, Miller DT, et al. Proc Natl Acad Sci U S A. 2012;109(41):16666-16671. doi:10.1073/pnas.1202529109

    Craniofacial abnormalities in Hutchinson-Gilford progeria syndrome

    Ullrich NJ, Silvera VM, Campbell SE, Gordon LB. AJNR Am J Neuroradiol. 2012;33(8):1512-1518. doi:10.3174/ajnr.A3088

    A prospective study of radiographic manifestations in Hutchinson-Gilford progeria syndrome

    Cleveland RH, Gordon LB, Kleinman ME, et al. Pediatr Radiol. 2012;42(9):1089-1098. doi:10.1007/s00247-012-2423-1

    Progeria: translational insights from cell biology

    Gordon LB, Cao K, Collins FS. J Cell Biol. 2012;199(1):9-13. doi:10.1083/jcb.201207072


    2011

    Hutchinson-Gilford progeria is a skeletal dysplasia

    Gordon CM, Gordon LB, Snyder BD, et al. J Bone Miner Res. 2011;26(7):1670-1679. doi:10.1002/jbmr.392

    Low and high expressing alleles of the LMNA gene: implications for laminopathy disease development

    Rodríguez S, Eriksson M. PLoS One. 2011;6(9):e25472. doi:10.1371/journal.pone.0025472


    2010

    Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging

    Olive M, Harten I, Mitchell R, et al. Arterioscler Thromb Vasc Biol. 2010;30(11):2301-2309. doi:10.1161/ATVBAHA.110.209460


    2008

    Reversible phenotype in a mouse model of Hutchinson-Gilford progeria syndrome

    Sagelius H, Rosengardten Y, Schmidt E, Sonnabend C, Rozell B, Eriksson M. J Med Genet. 2008;45(12):794-801. doi:10.1136/jmg.2008.060772

    Targeted transgenic expression of the mutation causing Hutchinson-Gilford progeria syndrome leads to proliferative and degenerative epidermal disease

    Sagelius H, Rosengardten Y, Hanif M, et al. J Cell Sci. 2008;121(Pt 7):969-978. doi:10.1242/jcs.022913

    Phenotype and course of Hutchinson-Gilford progeria syndrome

    Merideth MA, Gordon LB, Clauss S, et al. N Engl J Med. 2008;358(6):592-604. doi:10.1056/NEJMoa0706898


    2007

    Disease progression in Hutchinson-Gilford progeria syndrome: impact on growth and development

    Gordon LB, McCarten KM, Giobbie-Hurder A, et al. Pediatrics. 2007;120(4):824-833. doi:10.1542/peds.2007-1357

    New approaches to progeria

    Kieran MW, Gordon L, Kleinman M. [published correction appears in Pediatrics. 2007 Dec;120(6):1405]. Pediatrics. 2007;120(4):834-841. doi:10.1542/peds.2007-1356


    2005

    Reduced adiponectin and HDL cholesterol without elevated C-reactive protein: clues to the biology of premature atherosclerosis in Hutchinson-Gilford Progeria Syndrome

    Gordon LB, Harten IA, Patti ME, Lichtenstein AH. J Pediatr. 2005;146(3):336-341. doi:10.1016/j.jpeds.2004.10.064

    Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome

    Capell BC, Erdos MR, Madigan JP, et al. Proc Natl Acad Sci U S A. 2005;102(36):12879-12884. doi:10.1073/pnas.0506001102


    2004

    Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome

    Goldman RD, Shumaker DK, Erdos MR, et al. Proc Natl Acad Sci U S A. 2004;101(24):8963-8968. doi:10.1073/pnas.0402943101


     

    PRF Clinical Drug Trials

    Publications Reporting Results from Clinical Trials

    Sponsored by The Progeria Research Foundation

    2025

    Hutchinson-Gilford Progeria Syndrome

    Gordon LB, Brown WT, Collins FS. 2003 Dec 12 [Updated 2025 Mar 13]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025.

    Longitudinal Changes in Myocardial Deformation in Hutchinson-Gilford Progeria Syndrome

    Olsen FJ, Biering-Sørensen T, Lunze FI, et al. Circ Cardiovasc Imaging. 2025;18(2):e017544. doi:10.1161/CIRCIMAGING.124.017544


    2024

    Abnormal Myocardial Deformation Despite Normal Ejection Fraction in Hutchinson-Gilford Progeria Syndrome

    Olsen FJ, Biering-Sørensen T, Lunze F, et al. J Am Heart Assoc. 2024;13(3):e031470. doi:10.1161/JAHA.123.031470


      2023

      Plasma Progerin in Patients With Hutchinson-Gilford Progeria Syndrome: Immunoassay Development and Clinical Evaluation

      Gordon LB, Norris W, Hamren S, et al. Circulation. 2023;147(23):1734-1744. doi:10.1161/CIRCULATIONAHA.122.060002

      Baseline Range of Motion, Strength, Motor Function, and Participation in Youth with Hutchinson-Gilford Progeria Syndrome

      Malloy J, Berry E, Correia A, et al. Phys Occup Ther Pediatr. 2023;43(4):482-501. doi:10.1080/01942638.2022.2158054

      Progression of Cardiac Abnormalities in Hutchinson-Gilford Progeria Syndrome: A Prospective Longitudinal Study

      Olsen FJ, Gordon LB, Smoot L, et al. Circulation. 2023;147(23):1782-1784. doi:10.1161/CIRCULATIONAHA.123.064370


      2022

      Clonal hematopoiesis is not prevalent in Hutchinson-Gilford progeria syndrome

      Díez-Díez M, Amorós-Pérez M, de la Barrera J, et al. Geroscience. 2023;45(2):1231-1236. doi:10.1007/s11357-022-00607-2

      FDA approval summary for lonafarnib (Zokinvy) for the treatment of Hutchinson-Gilford progeria syndrome and processing-deficient progeroid laminopathies

      Suzuki M, Jeng LJB, Chefo S, et al. Genet Med. 2023;25(2):100335. doi:10.1016/j.gim.2022.11.003


      2020

      Skeletal maturation and long-bone growth patterns of patients with progeria: a retrospective study

      Tsai A, Johnston PR, Gordon LB, Walters M, Kleinman M, Laor T. Lancet Child Adolesc Health. 2020;4(4):281-289. doi:10.1016/S2352-4642(20)30023-7


      2019

      Extraskeletal Calcifications in Hutchinson-Gilford Progeria Syndrome

      Gordon CM, Cleveland RH, Baltrusaitis K, et al. Bone. 2019;125:103-111. doi:10.1016/j.bone.2019.05.008


      2018

      Association of Lonafarnib Treatment vs No Treatment With Mortality Rate in Patients With Hutchinson-Gilford Progeria Syndrome

      Gordon LB, Shappell H, Massaro J, et al. JAMA. 2018;319(16):1687-1695. doi:10.1001/jama.2018.3264

      Survey of plasma proteins in children with progeria pre-therapy and on-therapy with lonafarnib

      Gordon LB, Campbell SE, Massaro JM, et al. Pediatr Res. 2018;83(5):982-992. doi:10.1038/pr.2018.9

      Microbiome at sites of gingival recession in children with Hutchinson-Gilford progeria syndrome

      Bassir SH, Chase I, Paster BJ, et al. J Periodontol. 2018;89(6):635-644. doi:10.1002/JPER.17-0351

      Pubertal Progression in Female Adolescents with Progeria

      Greer MM, Kleinman ME, Gordon LB, et al. J Pediatr Adolesc Gynecol. 2018;31(3):238-241. doi:10.1016/j.jpag.2017.12.005

      Cardiac Abnormalities in Patients With Hutchinson-Gilford Progeria Syndrome

      Prakash A, Gordon LB, Kleinman ME, et al. JAMA Cardiol. 2018;3(4):326-334. doi:10.1001/jamacardio.2017.5235


      2017

      Ophthalmologic Features of Progeria

      Mantagos IS, Kleinman ME, Kieran MW, Gordon LB. Am J Ophthalmol. 2017;182:126-132. doi:10.1016/j.ajo.2017.07.020


      2016

      Clinical Trial of the Protein Farnesylation Inhibitors Lonafarnib, Pravastatin, and Zoledronic Acid in Children With Hutchinson-Gilford Progeria Syndrome

      Gordon LB, Kleinman ME, Massaro J, et al. Circulation. 2016;134(2):114-125. doi:10.1161/CIRCULATIONAHA.116.022188

      Seeking a Cure for One of the Rarest Diseases: Progeria

      Collins FS. Circulation. 2016;134(2):126-129. doi:10.1161/CIRCULATIONAHA.116.022965


      2014

      Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome

      Gordon LB, Massaro J, D’Agostino RB Sr, et al. Circulation. 2014;130(1):27-34. doi:10.1161/CIRCULATIONAHA.113.008285

      Initial cutaneous manifestations of Hutchinson-Gilford progeria syndrome

      Rork JF, Huang JT, Gordon LB, Kleinman M, Kieran MW, Liang MG. Pediatr Dermatol. 2014;31(2):196-202. doi:10.1111/pde.12284


      2013

      Imaging characteristics of cerebrovascular arteriopathy and stroke in Hutchinson-Gilford progeria syndrome

      Silvera VM, Gordon LB, Orbach DB, Campbell SE, Machan JT, Ullrich NJ. AJNR Am J Neuroradiol. 2013;34(5):1091-1097. doi:10.3174/ajnr.A3341

      Neurologic features of Hutchinson-Gilford progeria syndrome after lonafarnib treatment

      Ullrich NJ, Kieran MW, Miller DT, et al. Neurology. 2013;81(5):427-430. doi:10.1212/WNL.0b013e31829d85c0

      Moving from gene discovery to clinical trials in Hutchinson-Gilford progeria syndrome

      King AA, Heyer GL. Neurology. 2013;81(5):408-409. doi:10.1212/WNL.0b013e31829d87cd


      2012

      Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome

      Gordon LB, Kleinman ME, Miller DT, et al. Proc Natl Acad Sci U S A. 2012;109(41):16666-16671. doi:10.1073/pnas.1202529109

      Mechanisms of premature vascular aging in children with Hutchinson-Gilford progeria syndrome

      Gerhard-Herman M, Smoot LB, Wake N, et al. Hypertension. 2012;59(1):92-97. doi:10.1161/HYPERTENSIONAHA.111.180919

      A prospective study of radiographic manifestations in Hutchinson-Gilford progeria syndrome

      Cleveland RH, Gordon LB, Kleinman ME, et al. Pediatr Radiol. 2012;42(9):1089-1098. doi:10.1007/s00247-012-2423-1

      Craniofacial abnormalities in Hutchinson-Gilford progeria syndrome

      Ullrich NJ, Silvera VM, Campbell SE, Gordon LB. AJNR Am J Neuroradiol. 2012;33(8):1512-1518. doi:10.3174/ajnr.A3088


      2011

      Hutchinson-Gilford progeria is a skeletal dysplasia

      Gordon CM, Gordon LB, Snyder BD, et al.. J Bone Miner Res. 2011;26(7):1670-1679. doi:10.1002/jbmr.392

      Otologic and audiologic manifestations of Hutchinson-Gilford progeria syndrome

      Guardiani E, Zalewski C, Brewer C, et al. Laryngoscope. 2011;121(10):2250-2255. doi:10.1002/lary.22151


      2009

      Hutchinson-Gilford progeria syndrome: oral and craniofacial phenotypes

      Domingo DL, Trujillo MI, Council SE, et al. Oral Dis. 2009;15(3):187-195. doi:10.1111/j.1601-0825.2009.01521.x


      2008

      Phenotype and course of Hutchinson-Gilford progeria syndrome

      Merideth MA, Gordon LB, Clauss S, et al. N Engl J Med. 2008;358(6):592-604. doi:10.1056/NEJMoa0706898

       

      PRF International Progeria Registry

      Publications Utilizing Data from

      The Progeria Research Foundation International Progeria Registry

      2025

      Hutchinson-Gilford Progeria Syndrome

      Gordon LB, Brown WT, Collins FS. 2003 Dec 12 [Updated 2025 Mar 13]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025.


      2024

      Epidemiological characteristics of patients with Hutchinson-Gilford progeria syndrome and progeroid laminopathies in China

      Wang J, Yu Q, Tang X, et al. Pediatr Res. 2024;95(5):1356-1362. doi:10.1038/s41390-023-02981-9

      PRF Scientific Workshops

      Publications Reporting Results from Scientific Workshops

      Sponsored by The Progeria Research Foundation

      2021

      The progeria research foundation 10th international scientific workshop; researching possibilities, ExTENding lives – webinar version scientific summary

      Gordon LB, Tuminelli K, Andrés V, et al. Aging (Albany NY). 2021;13(6):9143-9151. doi:10.18632/aging.202835


      2014

      Progeria: a paradigm for translational medicine

      Gordon LB, Rothman FG, López-Otín C, Misteli T. Cell. 2014;156(3):400-407. doi:10.1016/j.cell.2013.12.028


      2008

      Highlights of the 2007 Progeria Research Foundation scientific workshop: progress in translational science

      Gordon LB, Harling-Berg CJ, Rothman FG. J Gerontol A Biol Sci Med Sci. 2008;63(8):777-787. doi:10.1093/gerona/63.8.777


      2002

      Searching for clues to premature aging

      Uitto J. Trends Mol Med. 2002;8(4):155-157. doi:10.1016/s1471-4914(02)02288-8

      PRF Grant Funded Programs

      Publications Acknowledging Grant Funding from

      The Progeria Research Foundation

      2025

      Hutchinson-Gilford Progeria Syndrome

      Gordon LB, Brown WT, Collins FS. 2003 Dec 12 [Updated 2025 Mar 13]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025.

      Restoring neuropetide Y levels in the hypothalamus ameliorates premature aging phenotype in mice

      Ferreira-Marques M, Carmo-Silva S, Pereira J, et al. Geroscience. Published online February 27, 2025. doi:10.1007/s11357-025-01574-0

      Longitudinal Changes in Myocardial Deformation in Hutchinson-Gilford Progeria Syndrome

      Olsen FJ, Biering-Sørensen T, Lunze FI, et al. Circ Cardiovasc Imaging. 2025;18(2):e017544. doi:10.1161/CIRCIMAGING.124.017544


      2024

      Intervention for critical aortic stenosis in Hutchinson-Gilford progeria syndrome

      Gordon LB, Basso S, Maestranzi J, et al. Front Cardiovasc Med. 2024;11:1356010. Published 2024 Apr 25. doi:10.3389/fcvm.2024.1356010

      Inflammation and Fibrosis in Progeria: Organ-Specific Responses in an HGPS Mouse Model

      Krüger P, Schroll M, Fenzl F, et al. Int J Mol Sci. 2024;25(17):9323. Published 2024 Aug 28. doi:10.3390/ijms25179323

      The NLRP3 inhibitor Dapansutrile improves the therapeutic action of lonafarnib on progeroid mice

      Muela-Zarzuela I, Suarez-Rivero JM, Boy-Ruiz D, et al. Aging Cell. 2024;23(9):e14272. doi:10.1111/acel.14272

      Abnormal Myocardial Deformation Despite Normal Ejection Fraction in Hutchinson-Gilford Progeria Syndrome

      Olsen FJ, Biering-Sørensen T, Lunze F, et al. J Am Heart Assoc. 2024;13(3):e031470. doi:10.1161/JAHA.123.031470

      Vascular Calcification: A Passive Process That Requires Active Inhibition

      Villa-Bellosta R. Biology (Basel). 2024;13(2):111. Published 2024 Feb 9. doi:10.3390/biology13020111

      Peripheral artery disease and outcomes: how can we improve risk prediction?

      Yanamandala M, Goudot G, Gerhard-Herman MD. Eur Heart J. 2024;45(19):1750-1752. doi:10.1093/eurheartj/ehae154


      2023

      Ghrelin delays premature aging in Hutchinson-Gilford progeria syndrome

      Ferreira-Marques M, Carvalho A, Franco AC, et al. Aging Cell. 2023;22(12):e13983. doi:10.1111/acel.13983

      Plasma Progerin in Patients With Hutchinson-Gilford Progeria Syndrome: Immunoassay Development and Clinical Evaluation

      Gordon LB, Norris W, Hamren S, et al. Circulation. 2023;147(23):1734-1744. doi:10.1161/CIRCULATIONAHA.122.060002

      Impact of Combined Baricitinib and FTI Treatment on Adipogenesis in Hutchinson-Gilford Progeria Syndrome and Other Lipodystrophic Laminopathies

      Hartinger R, Lederer EM, Schena E, Lattanzi G, Djabali K. Cells. 2023;12(10):1350. Published 2023 May 9. doi:10.3390/cells12101350

      Turnover and replication analysis by isotope labeling (TRAIL) reveals the influence of tissue context on protein and organelle lifetimes

      Hasper J, Welle K, Hryhorenko J, Ghaemmaghami S, Buchwalter A. Mol Syst Biol. 2023;19(4):e11393. doi:10.15252/msb.202211393

      Long lifetime and tissue-specific accumulation of lamin A/C in Hutchinson-Gilford progeria syndrome

      Hasper J, Welle K, Swovick K, Hryhorenko J, Ghaemmaghami S, Buchwalter A. J Cell Biol. 2024;223(1):e202307049. doi:10.1083/jcb.202307049

      Progerinin, an Inhibitor of Progerin, Alleviates Cardiac Abnormalities in a Model Mouse of Hutchinson-Gilford Progeria Syndrome

      Kang SM, Seo S, Song EJ, et al. Cells. 2023;12(9):1232. Published 2023 Apr 24. doi:10.3390/cells12091232

      A new fluorescent probe for the visualization of progerin

      Macicior J, Fernández D, Ortega-Gutiérrez S. Bioorg Chem. 2024;142:106967. doi:10.1016/j.bioorg.2023.106967

      Baseline Range of Motion, Strength, Motor Function, and Participation in Youth with Hutchinson-Gilford Progeria Syndrome

      Malloy J, Berry E, Correia A, et al. Phys Occup Ther Pediatr. 2023;43(4):482-501. doi:10.1080/01942638.2022.2158054

      The farnesyl transferase inhibitor (FTI) lonafarnib improves nuclear morphology in ZMPSTE24-deficient fibroblasts from patients with the progeroid disorder MAD-B

      Odinammadu KO, Shilagardi K, Tuminelli K, Judge DP, Gordon LB, Michaelis S. Nucleus. 2023;14(1):2288476. doi:10.1080/19491034.2023.2288476

      Progression of Cardiac Abnormalities in Hutchinson-Gilford Progeria Syndrome: A Prospective Longitudinal Study

      Olsen FJ, Gordon LB, Smoot L, et al. Circulation. 2023;147(23):1782-1784. doi:10.1161/CIRCULATIONAHA.123.064370


      2022

      Progeria: a perspective on potential drug targets and treatment strategies

      Benedicto I, Chen X, Bergo MO, Andrés V. Expert Opin Ther Targets. 2022;26(5):393-399. doi:10.1080/14728222.2022.2078699

      Quantification of Farnesylated Progerin in Hutchinson-Gilford Progeria Patient Cells by Mass Spectrometry

      Camafeita E, Jorge I, Rivera-Torres J, Andrés V, Vázquez J. Int J Mol Sci. 2022;23(19):11733. Published 2022 Oct 3. doi:10.3390/ijms231911733

      Clonal hematopoiesis is not prevalent in Hutchinson-Gilford progeria syndrome

      Díez-Díez M, Amorós-Pérez M, de la Barrera J, et al. Geroscience. 2023;45(2):1231-1236. doi:10.1007/s11357-022-00607-2

      Endothelial and systemic upregulation of miR-34a-5p fine-tunes senescence in progeria

      Manakanatas C, Ghadge SK, Agic A, et al. Aging (Albany NY). 2022;14(1):195-224. doi:10.18632/aging.203820


      2021

      Molecular and Cellular Mechanisms Driving Cardiovascular Disease in Hutchinson-Gilford Progeria Syndrome: Lessons Learned from Animal Models

      Benedicto I, Dorado B, Andrés V. Cells. 2021;10(5):1157. Published 2021 May 11. doi:10.3390/cells10051157

      A small-molecule ICMT inhibitor delays senescence of Hutchinson-Gilford progeria syndrome cells

      Chen X, Yao H, Kashif M, et al. Elife. 2021;10:e63284. Published 2021 Feb 2. doi:10.7554/eLife.63284

      A targeted antisense therapeutic approach for Hutchinson-Gilford progeria syndrome

      Erdos MR, Cabral WA, Tavarez UL, et al. Nat Med. 2021;27(3):536-545. doi:10.1038/s41591-021-01274-0

      Inhibition of the NLRP3 inflammasome improves lifespan in animal murine model of Hutchinson-Gilford Progeria

      González-Dominguez A, Montañez R, Castejón-Vega B, et al. EMBO Mol Med. 2021;13(10):e14012. doi:10.15252/emmm.202114012

      Progerinin, an optimized progerin-lamin A binding inhibitor, ameliorates premature senescence phenotypes of Hutchinson-Gilford progeria syndrome

      Kang SM, Yoon MH, Ahn J, et al. [published correction appears in Commun Biol. 2021 Mar 2;4(1):297. doi: 10.1038/s42003-021-01843-6]. Commun Biol. 2021;4(1):5. Published 2021 Jan 4. doi:10.1038/s42003-020-01540-w

      In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice

      Koblan LW, Erdos MR, Wilson C, et al. Nature. 2021;589(7843):608-614. doi:10.1038/s41586-020-03086-7

      A novel homozygous synonymous variant further expands the phenotypic spectrum of POLR3A-related pathologies

      Lessel D, Rading K, Campbell SE, et al. Am J Med Genet A. 2022;188(1):216-223. doi:10.1002/ajmg.a.62525

      Paclitaxel mitigates structural alterations and cardiac conduction system defects in a mouse model of Hutchinson-Gilford progeria syndrome

      Macías Á, Díaz-Larrosa JJ, Blanco Y, et al. Cardiovasc Res. 2022;118(2):503-516. doi:10.1093/cvr/cvab055

      Small-Molecule Therapeutic Perspectives for the Treatment of Progeria

      Macicior J, Marcos-Ramiro B, Ortega-Gutiérrez S. Int J Mol Sci. 2021;22(13):7190. Published 2021 Jul 3. doi:10.3390/ijms22137190

      Isoprenylcysteine Carboxylmethyltransferase-Based Therapy for Hutchinson-Gilford Progeria Syndrome

      Marcos-Ramiro B, Gil-Ordóñez A, Marín-Ramos NI, et al. ACS Cent Sci. 2021;7(8):1300-1310. doi:10.1021/acscentsci.0c01698

      Systematic screening identifies therapeutic antisense oligonucleotides for Hutchinson-Gilford progeria syndrome

      Puttaraju M, Jackson M, Klein S, et al. [published correction appears in Nat Med. 2021 Jul;27(7):1309. doi: 10.1038/s41591-021-01415-5]. Nat Med. 2021;27(3):526-535. doi:10.1038/s41591-021-01262-4

      Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and lifespan in mice

      Richardson NE, Konon EN, Schuster HS, et al. Nat Aging. 2021;1(1):73-86. doi:10.1038/s43587-020-00006-2

      Interleukin-6 neutralization ameliorates symptoms in prematurely aged mice

      Squarzoni S, Schena E, Sabatelli P, et al. Aging Cell. 2021;20(1):e13285. doi:10.1111/acel.13285

      Decreased vascular smooth muscle contractility in Hutchinson-Gilford Progeria Syndrome linked to defective smooth muscle myosin heavy chain expression

      von Kleeck R, Castagnino P, Roberts E, Talwar S, Ferrari G, Assoian RK. Sci Rep. 2021;11(1):10625. Published 2021 May 19. doi:10.1038/s41598-021-90119-4


      2020

      Neuropeptide Y Enhances Progerin Clearance and Ameliorates the Senescent Phenotype of Human Hutchinson-Gilford Progeria Syndrome Cells

      Aveleira CA, Ferreira-Marques M, Cortes L, et al. J Gerontol A Biol Sci Med Sci. 2020;75(6):1073-1078. doi:10.1093/gerona/glz280

      Interplay of the nuclear envelope with chromatin in physiology and pathology

      Burla R, La Torre M, Maccaroni K, Verni F, Giunta S, Saggio I. Nucleus. 2020;11(1):205-218. doi:10.1080/19491034.2020.1806661

      Lamin A involvement in ageing processes

      Cenni V, Capanni C, Mattioli E, et al. Ageing Res Rev. 2020;62:101073. doi:10.1016/j.arr.2020.101073

      Evaluation of musculoskeletal phenotype of the G608G progeria mouse model with lonafarnib, pravastatin, and zoledronic acid as treatment groups

      Cubria MB, Suarez S, Masoudi A, et al. Proc Natl Acad Sci U S A. 2020;117(22):12029-12040. doi:10.1073/pnas.1906713117

      Identification of common cardiometabolic alterations and deregulated pathways in mouse and pig models of aging

      Fanjul V, Jorge I, Camafeita E, et al. Aging Cell. 2020;19(9):e13203. doi:10.1111/acel.13203

      Phosphorylated Lamin A/C in the Nuclear Interior Binds Active Enhancers Associated with Abnormal Transcription in Progeria

      Ikegami K, Secchia S, Almakki O, Lieb JD, Moskowitz IP. Dev Cell. 2020;52(6):699-713.e11. doi:10.1016/j.devcel.2020.02.011

      Cytoskeleton stiffness regulates cellular senescence and innate immune response in Hutchinson-Gilford Progeria Syndrome

      Mu X, Tseng C, Hambright WS, et al. Aging Cell. 2020;19(8):e13152. doi:10.1111/acel.13152

      First progeria monkey model generated using base editor

      Reddy P, Shao Y, Hernandez-Benitez R, Nuñez Delicado E, Izpisua Belmonte JC. Protein Cell. 2020;11(12):862-865. doi:10.1007/s13238-020-00765-z

      Skeletal maturation and long-bone growth patterns of patients with progeria: a retrospective study

      Tsai A, Johnston PR, Gordon LB, Walters M, Kleinman M, Laor T. Lancet Child Adolesc Health. 2020;4(4):281-289. doi:10.1016/S2352-4642(20)30023-7

      New treatments for progeria

      Villa-Bellosta R. Aging (Albany NY). 2019;11(24):11801-11802. doi:10.18632/aging.102626

      Dietary magnesium supplementation improves lifespan in a mouse model of progeria

      Villa-Bellosta R. EMBO Mol Med. 2020;12(10):e12423. doi:10.15252/emmm.202012423

      Redox theory in progeria

      Villa-Bellosta R. Aging (Albany NY). 2020;12(21):20934-20935. doi:10.18632/aging.104211


      2019

      Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice

      Bárcena C, Valdés-Mas R, Mayoral P, et al. Nat Med. 2019;25(8):1234-1242. doi:10.1038/s41591-019-0504-5

      Single-dose CRISPR-Cas9 therapy extends lifespan of mice with Hutchinson-Gilford progeria syndrome

      Beyret E, Liao HK, Yamamoto M, et al. Nat Med. 2019;25(3):419-422. doi:10.1038/s41591-019-0343-4

      Generation and characterization of a novel knockin minipig model of Hutchinson-Gilford progeria syndrome

      Dorado B, Pløen GG, Barettino A, et al. Cell Discov. 2019;5:16. Published 2019 Mar 19. doi:10.1038/s41421-019-0084-z

      Extraskeletal Calcifications in Hutchinson-Gilford Progeria Syndrome

      Gordon CM, Cleveland RH, Baltrusaitis K, et al. Bone. 2019;125:103-111. doi:10.1016/j.bone.2019.05.008

      Vascular smooth muscle cell loss underpins the accelerated atherosclerosis in Hutchinson-Gilford progeria syndrome

      Hamczyk MR, Andrés V. Nucleus. 2019;10(1):28-34. doi:10.1080/19491034.2019.1589359

      Progerin accelerates atherosclerosis by inducing endoplasmic reticulum stress in vascular smooth muscle cells

      Hamczyk MR, Villa-Bellosta R, Quesada V, et al. EMBO Mol Med. 2019;11(4):e9736. doi:10.15252/emmm.201809736

      Remodeling of Bone Marrow Hematopoietic Stem Cell Niches Promotes Myeloid Cell Expansion during Premature or Physiological Aging

      Ho YH, Del Toro R, Rivera-Torres J, et al. Cell Stem Cell. 2019;25(3):407-418.e6. doi:10.1016/j.stem.2019.06.007

      Dysfunction of iPSC-derived endothelial cells in human Hutchinson-Gilford progeria syndrome

      Matrone G, Thandavarayan RA, Walther BK, Meng S, Mojiri A, Cooke JP. Cell Cycle. 2019;18(19):2495-2508. doi:10.1080/15384101.2019.1651587

      Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome

      Santiago-Fernández O, Osorio FG, Quesada V, et al. Nat Med. 2019;25(3):423-426. doi:10.1038/s41591-018-0338-6

      Physicochemical mechanotransduction alters nuclear shape and mechanics via heterochromatin formation

      Stephens AD, Liu PZ, Kandula V, et al. Mol Biol Cell. 2019;30(17):2320-2330. doi:10.1091/mbc.E19-05-0286

      ATP-based therapy prevents vascular calcification and extends longevity in a mouse model of Hutchinson-Gilford progeria syndrome

      Villa-Bellosta R. Proc Natl Acad Sci U S A. 2019;116(47):23698-23704. doi:10.1073/pnas.1910972116

      Impact of acetate- or citrate-acidified bicarbonate dialysate on ex vivo aorta wall calcification

      Villa-Bellosta R, Hernández-Martínez E, Mérida-Herrero E, González-Parra E. Sci Rep. 2019;9(1):11374. Published 2019 Aug 6. doi:10.1038/s41598-019-47934-7

      Questioning the Safety of Calcidiol in Hemodialysis Patients

      Villa-Bellosta R, Mahillo-Fernández I, Ortíz A, González-Parra E. Nutrients. 2019;11(5):959. Published 2019 Apr 26. doi:10.3390/nu11050959


      2018

      Methionine Restriction Extends Lifespan in Progeroid Mice and Alters Lipid and Bile Acid Metabolism

      Bárcena C, Quirós PM, Durand S, et al. Cell Rep. 2018;24(9):2392-2403. doi:10.1016/j.celrep.2018.07.089

      Microbiome at sites of gingival recession in children with Hutchinson-Gilford progeria syndrome

      Bassir SH, Chase I, Paster BJ, et al. J Periodontol. 2018;89(6):635-644. doi:10.1002/JPER.17-0351

      Genomic instability and DNA replication defects in progeroid syndromes

      Burla R, La Torre M, Merigliano C, Vernì F, Saggio I. Nucleus. 2018;9(1):368-379. doi:10.1080/19491034.2018.1476793

      Mouse Models to Disentangle the Hallmarks of Human Aging

      Folgueras AR, Freitas-Rodríguez S, Velasco G, López-Otín C. Circ Res. 2018;123(7):905-924. doi:10.1161/CIRCRESAHA.118.312204

      Survey of plasma proteins in children with progeria pre-therapy and on-therapy with lonafarnib

      Gordon LB, Campbell SE, Massaro JM, et al. Pediatr Res. 2018;83(5):982-992. doi:10.1038/pr.2018.9

      Association of Lonafarnib Treatment vs No Treatment With Mortality Rate in Patients With Hutchinson-Gilford Progeria Syndrome

      Gordon LB, Shappell H, Massaro J, et al. JAMA. 2018;319(16):1687-1695. doi:10.1001/jama.2018.3264

      Pubertal Progression in Female Adolescents with Progeria

      Greer MM, Kleinman ME, Gordon LB, et al. J Pediatr Adolesc Gynecol. 2018;31(3):238-241. doi:10.1016/j.jpag.2017.12.005

      Accelerated atherosclerosis in HGPS

      Hamczyk MR, Andrés V. Aging (Albany NY). 2018;10(10):2555-2556. doi:10.18632/aging.101608

      Vascular Smooth Muscle-Specific Progerin Expression Accelerates Atherosclerosis and Death in a Mouse Model of Hutchinson-Gilford Progeria Syndrome

      Hamczyk MR, Villa-Bellosta R, Gonzalo P, et al. Circulation. 2018;138(3):266-282. doi:10.1161/CIRCULATIONAHA.117.030856

      Analyses of LMNA-negative juvenile progeroid cases confirms biallelic POLR3A mutations in Wiedemann-Rautenstrauch-like syndrome and expands the phenotypic spectrum of PYCR1 mutations

      Lessel D, Ozel AB, Campbell SE, et al. Hum Genet. 2018;137(11-12):921-939. doi:10.1007/s00439-018-1957-1

      Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse

      Osmanagic-Myers S, Kiss A, Manakanatas C, et al. J Clin Invest. 2019;129(2):531-545. doi:10.1172/JCI121297

      Cardiac Abnormalities in Patients With Hutchinson-Gilford Progeria Syndrome

      Prakash A, Gordon LB, Kleinman ME, et al. JAMA Cardiol. 2018;3(4):326-334. doi:10.1001/jamacardio.2017.5235

      OGT (O-GlcNAc Transferase) Selectively Modifies Multiple Residues Unique to Lamin A

      Simon DN, Wriston A, Fan Q, et al. Cells. 2018;7(5):44. Published 2018 May 17. doi:10.3390/cells7050044

      Nuclear import pathway key to rescuing dominant progerin phenotypes

      Wilson KL. Sci Signal. 2018;11(537):eaat9448. Published 2018 Jul 3. doi:10.1126/scisignal.aat9448

      Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome

      Wu Z, Zhang W, Song M, et al. Protein Cell. 2018;9(4):333-350. doi:10.1007/s13238-018-0517-8


      2017

      Functional relevance of miRNAs in premature ageing

      Caravia XM, Roiz-Valle D, Morán-Álvarez A, López-Otín C. Mech Ageing Dev. 2017;168:10-19. doi:10.1016/j.mad.2017.05.003

      Reprogramming progeria fibroblasts re-establishes a normal epigenetic landscape

      Chen Z, Chang WY, Etheridge A, et al. Aging Cell. 2017;16(4):870-887. doi:10.1111/acel.12621

      A-type lamins and cardiovascular disease in premature aging syndromes

      Dorado B, Andrés V. Curr Opin Cell Biol. 2017;46:17-25. doi:10.1016/j.ceb.2016.12.005

      LMNA Sequences of 60,706 Unrelated Individuals Reveal 132 Novel Missense Variants in A-Type Lamins and Suggest a Link between Variant p.G602S and Type 2 Diabetes – PubMed (nih.gov)

      Florwick A, Dharmaraj T, Jurgens J, Valle D, Wilson KL.  Front Genet. 2017;8:79. Published 2017 Jun 15. doi:10.3389/fgene.2017.00079

      Intermittent treatment with farnesyltransferase inhibitor and sulforaphane improves cellular homeostasis in Hutchinson-Gilford progeria fibroblasts

      Gabriel D, Shafry DD, Gordon LB, Djabali K. Oncotarget. 2017;8(39):64809-64826. Published 2017 Jul 18. doi:10.18632/oncotarget.19363

      Aging in the Cardiovascular System: Lessons from Hutchinson-Gilford Progeria Syndrome

      Hamczyk MR, del Campo L, Andrés V. Annu Rev Physiol. 2018;80:27-48. doi:10.1146/annurev-physiol-021317-121454

      Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes

      Hilton BA, Liu J, Cartwright BM, et al. FASEB J. 2017;31(9):3882-3893. doi:10.1096/fj.201700014R

      Mice with reduced expression of the telomere-associated protein Ft1 develop p53-sensitive progeroid traits

      La Torre M, Merigliano C, Burla R, et al. Aging Cell. 2018;17(4):e12730. doi:10.1111/acel.12730

      Telomerase mRNA Reverses Senescence in Progeria Cells

      Li Y, Zhou G, Bruno IG, Cooke JP. J Am Coll Cardiol. 2017;70(6):804-805. doi:10.1016/j.jacc.2017.06.017

      Ophthalmologic Features of Progeria

      Mantagos IS, Kleinman ME, Kieran MW, Gordon LB. Am J Ophthalmol. 2017;182:126-132. doi:10.1016/j.ajo.2017.07.020

      Protein sequestration at the nuclear periphery as a potential regulatory mechanism in premature aging

      Serebryannyy L, Misteli T. J Cell Biol. 2018;217(1):21-37. doi:10.1083/jcb.201706061

      Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus

      Stephens AD, Banigan EJ, Adam SA, Goldman RD, Marko JF. Mol Biol Cell. 2017;28(14):1984-1996. doi:10.1091/mbc.E16-09-0653

      Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins

      Stephens AD, Liu PZ, Banigan EJ, et al. Mol Biol Cell. 2018;29(2):220-233. doi:10.1091/mbc.E17-06-0410

      The molecular architecture of lamins in somatic cells

      Turgay Y, Eibauer M, Goldman AE, et al. Nature. 2017;543(7644):261-264. doi:10.1038/nature21382

      Nucleoplasmic lamins define growth-regulating functions of lamina-associated polypeptide 2α in progeria cells

      Vidak S, Georgiou K, Fichtinger P, Naetar N, Dechat T, Foisner R. J Cell Sci. 2018;131(3):jcs208462. Published 2018 Feb 8. doi:10.1242/jcs.208462

      Progerin-Induced Replication Stress Facilitates Premature Senescence in Hutchinson-Gilford Progeria Syndrome

      Wheaton K, Campuzano D, Ma W, et al. Mol Cell Biol. 2017;37(14):e00659-16. Published 2017 Jun 29. doi:10.1128/MCB.00659-16

      Substrate stiffness-dependent regulation of the SRF-Mkl1 co-activator complex requires the inner nuclear membrane protein Emerin

      Willer MK, Carroll CW. J Cell Sci. 2017;130(13):2111-2118. doi:10.1242/jcs.197517


      2016

      A novel somatic mutation achieves partial rescue in a child with Hutchinson-Gilford progeria syndrome

      Bar DZ, Arlt MF, Brazier JF, et al. J Med Genet. 2017;54(3):212-216. doi:10.1136/jmedgenet-2016-104295

      Simple Separation of Functionally Distinct Populations of Lamin-Binding Proteins

      Berk JM, Wilson KL. Methods Enzymol. 2016;569:101-114. doi:10.1016/bs.mie.2015.09.034

      Seeking a Cure for One of the Rarest Diseases: Progeria

      Collins FS. Circulation. 2016;134(2):126-129. doi:10.1161/CIRCULATIONAHA.116.022965

      Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson-Gilford progeria fibroblasts

      Eisch V, Lu X, Gabriel D, Djabali K. Oncotarget. 2016;7(17):24700-24718. doi:10.18632/oncotarget.8267

      Temsirolimus Partially Rescues the Hutchinson-Gilford Progeria Cellular Phenotype

      Gabriel D, Gordon LB, Djabali K. PLoS One. 2016;11(12):e0168988. Published 2016 Dec 29. doi:10.1371/journal.pone.0168988

      Clinical Trial of the Protein Farnesylation Inhibitors Lonafarnib, Pravastatin, and Zoledronic Acid in Children With Hutchinson-Gilford Progeria Syndrome

      Gordon LB, Kleinman ME, Massaro J, et al. Circulation. 2016;134(2):114-125. doi:10.1161/CIRCULATIONAHA.116.022188

      Vitamin D receptor signaling improves Hutchinson-Gilford progeria syndrome cellular phenotypes

      Kreienkamp R, Croke M, Neumann MA, et al. Oncotarget. 2016;7(21):30018-30031. doi:10.18632/oncotarget.9065

      Repression of the Antioxidant NRF2 Pathway in Premature Aging

      Kubben N, Zhang W, Wang L, et al. Cell. 2016;165(6):1361-1374. doi:10.1016/j.cell.2016.05.017

      Interruption of progerin-lamin A/C binding ameliorates Hutchinson-Gilford progeria syndrome phenotype

      Lee SJ, Jung YS, Yoon MH, et al. J Clin Invest. 2016;126(10):3879-3893. doi:10.1172/JCI84164

      Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase

      Moiseeva O, Lopes-Paciencia S, Huot G, Lessard F, Ferbeyre G. Aging (Albany NY). 2016;8(2):366-381. doi:10.18632/aging.100903

      Cardiac electrical defects in progeroid mice and Hutchinson-Gilford progeria syndrome patients with nuclear lamina alterations

      Rivera-Torres J, Calvo CJ, Llach A, et al. Proc Natl Acad Sci U S A. 2016;113(46):E7250-E7259. doi:10.1073/pnas.1603754113

      Molecular insights into the premature aging disease progeria

      Vidak S, Foisner R. Histochem Cell Biol. 2016;145(4):401-417. doi:10.1007/s00418-016-1411-1


      2015

      ADAMTS7 in cardiovascular disease: from bedside to bench and back again?

      Arroyo AG, Andrés V. Circulation. 2015;131(13):1156-1159. doi:10.1161/CIRCULATIONAHA.115.015711

      Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria

      Chojnowski A, Ong PF, Wong ES, et al. Elife. 2015;4:e07759. Published 2015 Aug 27. doi:10.7554/eLife.07759

      Autophagy mediates degradation of nuclear lamina

      Dou Z, Xu C, Donahue G, et al. Nature. 2015;527(7576):105-109. doi:10.1038/nature15548

      The tail domain of lamin B1 is more strongly modulated by divalent cations than lamin A

      Ganesh S, Qin Z, Spagnol ST, et al. Nucleus. 2015;6(3):203-211. doi:10.1080/19491034.2015.1031436

      A high-content imaging-based screening pipeline for the systematic identification of anti-progeroid compounds

      Kubben N, Brimacombe KR, Donegan M, Li Z, Misteli T. Methods. 2016;96:46-58. doi:10.1016/j.ymeth.2015.08.024

      Mutant lamin A links prophase to a p53 independent senescence program

      Moiseeva O, Lessard F, Acevedo-Aquino M, Vernier M, Tsantrizos YS, Ferbeyre G. Cell Cycle. 2015;14(15):2408-2421. doi:10.1080/15384101.2015.1053671

      Lamins at the crossroads of mechanosignaling

      Osmanagic-Myers S, Dechat T, Foisner R. Genes Dev. 2015;29(3):225-237. doi:10.1101/gad.255968.114

      Gene-rich chromosomal regions are preferentially localized in the lamin B deficient nuclear blebs of atypical progeria cells

      Bercht Pfleghaar K, Taimen P, Butin-Israeli V, et al. [published correction appears in Nucleus. 2015;6(3):247. doi: 10.1080/19491034.2015.1049921]. Nucleus. 2015;6(1):66-76. doi:10.1080/19491034.2015.1004256

      Structural organization of nuclear lamins A, C, B1, and B2 revealed by superresolution microscopy

      Shimi T, Kittisopikul M, Tran J, et al. Mol Biol Cell. 2015;26(22):4075-4086. doi:10.1091/mbc.E15-07-0461

      Transgene silencing of the Hutchinson-Gilford progeria syndrome mutation results in a reversible bone phenotype, whereas resveratrol treatment does not show overall beneficial effects

      Strandgren C, Nasser HA, McKenna T, et al. FASEB J. 2015;29(8):3193-3205. doi:10.1096/fj.14-269217

      Proliferation of progeria cells is enhanced by lamina-associated polypeptide 2α (LAP2α) through expression of extracellular matrix proteins

      Vidak S, Kubben N, Dechat T, Foisner R. Genes Dev. 2015;29(19):2022-2036. doi:10.1101/gad.263939.115


      2014

      Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior

      Baek JH, Schmidt E, Viceconte N, et al. Hum Mol Genet. 2015;24(5):1305-1321. doi:10.1093/hmg/ddu541

      The non-random repositioning of whole chromosomes and individual gene loci in interphase nuclei and its relevance in disease, infection, aging, and cancer

      Bridger JM, Arican-Gotkas HD, Foster HA, et al. [published correction appears in Adv Exp Med Biol. 2014;773:E1]. Adv Exp Med Biol. 2014;773:263-279. doi:10.1007/978-1-4899-8032-8_12

      Role of lamin b1 in chromatin instability

      Butin-Israeli V, Adam SA, Jain N, et al.. Mol Cell Biol. 2015;35(5):884-898. doi:10.1128/MCB.01145-14

      Systematic identification of pathological lamin A interactors

      Dittmer TA, Sahni N, Kubben N, et al. Mol Biol Cell. 2014;25(9):1493-1510. doi:10.1091/mbc.E14-02-0733

      Sulforaphane enhances progerin clearance in Hutchinson-Gilford progeria fibroblasts

      Gabriel D, Roedl D, Gordon LB, Djabali K. Aging Cell. 2015;14(1):78-91. doi:10.1111/acel.12300

      Sorting nexin 6 enhances lamin a synthesis and incorporation into the nuclear envelope

      González-Granado JM, Navarro-Puche A, Molina-Sanchez P, et al. PLoS One. 2014;9(12):e115571. Published 2014 Dec 23. doi:10.1371/journal.pone.0115571

      Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation

      González-Granado JM, Silvestre-Roig C, Rocha-Perugini V, et al. Sci Signal. 2014;7(322):ra37. Published 2014 Apr 22. doi:10.1126/scisignal.2004872

      Interfacial binding and aggregation of lamin A tail domains associated with Hutchinson-Gilford progeria syndrome

      Kalinowski A, Yaron PN, Qin Z, et al. Biophys Chem. 2014;195:43-48. doi:10.1016/j.bpc.2014.08.005

      Interphase phosphorylation of lamin A

      Kochin V, Shimi T, Torvaldson E, et al. J Cell Sci. 2014;127(Pt 12):2683-2696. doi:10.1242/jcs.141820

      Mouse models and aging: longevity and progeria

      Liao CY, Kennedy BK. Curr Top Dev Biol. 2014;109:249-285. doi:10.1016/B978-0-12-397920-9.00003-2

      Atherosclerosis in ancient humans, accelerated aging syndromes and normal aging: is lamin a protein a common link?

      Miyamoto MI, Djabali K, Gordon LB. Glob Heart. 2014;9(2):211-218. doi:10.1016/j.gheart.2014.04.001

      Initial cutaneous manifestations of Hutchinson-Gilford progeria syndrome

      Rork JF, Huang JT, Gordon LB, Kleinman M, Kieran MW, Liang MG. Pediatr Dermatol. 2014;31(2):196-202. doi:10.1111/pde.12284


      2013

      Regulation of nucleotide excision repair by nuclear lamin b1

      Butin-Israeli V, Adam SA, Goldman RD. PLoS One. 2013;8(7):e69169. Published 2013 Jul 24. doi:10.1371/journal.pone.0069169

      Broken nuclei–lamins, nuclear mechanics, and disease

      Davidson PM, Lammerding J. Trends Cell Biol. 2014;24(4):247-256. doi:10.1016/j.tcb.2013.11.004

      Mechanical model of blebbing in nuclear lamin meshworks

      Funkhouser CM, Sknepnek R, Shimi T, Goldman AE, Goldman RD, Olvera de la Cruz M. Proc Natl Acad Sci U S A. 2013;110(9):3248-3253. doi:10.1073/pnas.1300215110

      Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics

      Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J. Nature. 2013;497(7450):507-511. doi:10.1038/nature12105

      Nuclear mechanics and mechanotransduction in health and disease

      Isermann P, Lammerding J. Curr Biol. 2013;23(24):R1113-R1121. doi:10.1016/j.cub.2013.11.009

      Calcium causes a conformational change in lamin A tail domain that promotes farnesyl-mediated membrane association

      Kalinowski A, Qin Z, Coffey K, et al. Biophys J. 2013;104(10):2246-2253. doi:10.1016/j.bpj.2013.04.016

      Identification of mitochondrial dysfunction in Hutchinson-Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture

      Rivera-Torres J, Acín-Perez R, Cabezas-Sánchez P, et al. J Proteomics. 2013;91:466-477. doi:10.1016/j.jprot.2013.08.008

      Imaging characteristics of cerebrovascular arteriopathy and stroke in Hutchinson-Gilford progeria syndrome

      Silvera VM, Gordon LB, Orbach DB, Campbell SE, Machan JT, Ullrich NJ. AJNR Am J Neuroradiol. 2013;34(5):1091-1097. doi:10.3174/ajnr.A3341

      Neurologic features of Hutchinson-Gilford progeria syndrome after lonafarnib treatment

      Ullrich NJ, Kieran MW, Miller DT, et al. Neurology. 2013;81(5):427-430. doi:10.1212/WNL.0b013e31829d85c0

      Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment

      Villa-Bellosta R, Rivera-Torres J, Osorio FG, et al. Circulation. 2013;127(24):2442-2451. doi:10.1161/CIRCULATIONAHA.112.000571


      2012

      A prospective study of radiographic manifestations in Hutchinson-Gilford progeria syndrome

      Cleveland RH, Gordon LB, Kleinman ME, et al. Pediatr Radiol. 2012;42(9):1089-1098. doi:10.1007/s00247-012-2423-1

      Automated image analysis of nuclear shape: what can we learn from a prematurely aged cell?

      Driscoll MK, Albanese JL, Xiong ZM, Mailman M, Losert W, Cao K. Aging (Albany NY). 2012;4(2):119-132. doi:10.18632/aging.100434

      Mechanisms of premature vascular aging in children with Hutchinson-Gilford progeria syndrome

      Gerhard-Herman M, Smoot LB, Wake N, et al. Hypertension. 2012;59(1):92-97. doi:10.1161/HYPERTENSIONAHA.111.180919

      Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome

      Gordon LB, Kleinman ME, Miller DT, et al. Proc Natl Acad Sci U S A. 2012;109(41):16666-16671. doi:10.1073/pnas.1202529109

      Progeria: translational insights from cell biology

      Gordon LB, Cao K, Collins FS. J Cell Biol. 2012;199(1):9-13. doi:10.1083/jcb.201207072

      Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria

      Liu B, Ghosh S, Yang X, et al. Cell Metab. 2012;16(6):738-750. doi:10.1016/j.cmet.2012.11.007

      Replication factor C1, the large subunit of replication factor C, is proteolytically truncated in Hutchinson-Gilford progeria syndrome

      Tang H, Hilton B, Musich PR, Fang DZ, Zou Y. Aging Cell. 2012;11(2):363-365. doi:10.1111/j.1474-9726.2011.00779.x

      Craniofacial abnormalities in Hutchinson-Gilford progeria syndrome

      Ullrich NJ, Silvera VM, Campbell


      2011

      Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis

      Candelario J, Borrego S, Reddy S, Comai L. Exp Cell Res. 2011;317(3):319-329. doi:10.1016/j.yexcr.2010.10.014

      Computational image analysis of nuclear morphology associated with various nuclear-specific aging disorders

      Choi S, Wang W, Ribeiro AJ, et al. Nucleus. 2011;2(6):570-579. doi:10.4161/nucl.2.6.17798

      Hutchinson-Gilford progeria is a skeletal dysplasia

      Gordon CM, Gordon LB, Snyder BD, et al.. J Bone Miner Res. 2011;26(7):1670-1679. doi:10.1002/jbmr.392

      Age-dependent loss of MMP-3 in Hutchinson-Gilford progeria syndrome

      Harten IA, Zahr RS, Lemire JM, et al. J Gerontol A Biol Sci Med Sci. 2011;66(11):1201-1207. doi:10.1093/gerona/glr137

      The defective nuclear lamina in Hutchinson-gilford progeria syndrome disrupts the nucleocytoplasmic Ran gradient and inhibits nuclear localization of Ubc9

      Kelley JB, Datta S, Snow CJ, et al. Mol Cell Biol. 2011;31(16):3378-3395. doi:10.1128/MCB.05087-11

      ‘Relax and Repair’ to restrain aging

      Krishnan V, Liu B, Zhou Z. Aging (Albany NY). 2011;3(10):943-954. doi:10.18632/aging.100399

      Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice

      Krishnan V, Chow MZ, Wang Z, et al. Proc Natl Acad Sci U S A. 2011;108(30):12325-12330. doi:10.1073/pnas.1102789108

      DNA-damage accumulation and replicative arrest in Hutchinson-Gilford progeria syndrome

      Musich PR, Zou Y. Biochem Soc Trans. 2011;39(6):1764-1769. doi:10.1042/BST20110687

      Structure and stability of the lamin A tail domain and HGPS mutant

      Qin Z, Kalinowski A, Dahl KN, Buehler MJ. J Struct Biol. 2011;175(3):425-433. doi:10.1016/j.jsb.2011.05.015

      Protein farnesylation inhibitors cause donut-shaped cell nuclei attributable to a centrosome separation defect

      Verstraeten VL, Peckham LA, Olive M, et al. Proc Natl Acad Sci U S A. 2011;108(12):4997-5002. doi:10.1073/pnas.1019532108


      2010

      Mechanobiology and the microcirculation: cellular, nuclear and fluid mechanics

      Dahl KN, Kalinowski A, Pekkan K. Microcirculation. 2010;17(3):179-191. doi:10.1111/j.1549-8719.2009.00016.x

      Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging

      Olive M, Harten I, Mitchell R, et al. Arterioscler Thromb Vasc Biol. 2010;30(11):2301-2309. doi:10.1161/ATVBAHA.110.209460


      2009

      Association of progerin-interactive partner proteins with lamina proteins: Mel18 is associated with emerin in HGPS

      Ju WN, Brown WT, Zhong N. Beijing Da Xue Xue Bao Yi Xue Ban. 2009;41(4):397-401.

      Altered nuclear functions in progeroid syndromes: a paradigm for aging research

      Li B, Jog S, Candelario J, Reddy S, Comai L. ScientificWorldJournal. 2009;9:1449-1462. Published 2009 Dec 16. doi:10.1100/tsw.2009.159


      2008

      Perturbation of wild-type lamin A metabolism results in a progeroid phenotype

      Candelario J, Sudhakar S, Navarro S, Reddy S, Comai L. Aging Cell. 2008;7(3):355-367. doi:10.1111/j.1474-9726.2008.00393.x

      Involvement of xeroderma pigmentosum group A (XPA) in progeria arising from defective maturation of prelamin A

      Liu Y, Wang Y, Rusinol AE, et al. FASEB J. 2008;22(2):603-611. doi:10.1096/fj.07-8598com

      Towards an integrated understanding of the structure and mechanics of the cell nucleus

      Rowat AC, Lammerding J, Herrmann H, Aebi U. Bioessays. 2008;30(3):226-236. doi:10.1002/bies.20720

      Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing

      Scaffidi P, Misteli T. Nat Cell Biol. 2008;10(4):452-459. doi:10.1038/ncb1708

      Increased mechanosensitivity and nuclear stiffness in Hutchinson-Gilford progeria cells: effects of farnesyltransferase inhibitors

      Verstraeten VL, Ji JY, Cummings KS, Lee RT, Lammerding J. Aging Cell. 2008;7(3):383-393. doi:10.1111/j.1474-9726.2008.00382.x

      Eliminating the synthesis of mature lamin A reduces disease phenotypes in mice carrying a Hutchinson-Gilford progeria syndrome allele

      Yang SH, Qiao X, Farber E, Chang SY, Fong LG, Young SG. J Biol Chem. 2008;283(11):7094-7099. doi:10.1074/jbc.M708138200

      Treatment with a farnesyltransferase inhibitor improves survival in mice with a Hutchinson-Gilford progeria syndrome mutation

      Yang SH, Qiao X, Fong LG, Young SG. Biochim Biophys Acta. 2008;1781(1-2):36-39. doi:10.1016/j.bbalip.2007.11.003


      2007

      Disease progression in Hutchinson-Gilford progeria syndrome: impact on growth and development

      Gordon LB, McCarten KM, Giobbie-Hurder A, et al. Pediatrics. 2007;120(4):824-833. doi:10.1542/peds.2007-1357

      Cell nuclei spin in the absence of lamin b1

      Ji JY, Lee RT, Vergnes L, et al. J Biol Chem. 2007;282(27):20015-20026. doi:10.1074/jbc.M611094200

      The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin

      McClintock D, Ratner D, Lokuge M, et al. PLoS One. 2007;2(12):e1269. Published 2007 Dec 5. doi:10.1371/journal.pone.0001269

      Increased progerin expression associated with unusual LMNA mutations causes severe progeroid syndromes

      Moulson CL, Fong LG, Gardner JM, et al. Hum Mutat. 2007;28(9):882-889. doi:10.1002/humu.20536


      2006

      Prelamin A and lamin A appear to be dispensable in the nuclear lamina

      Fong LG, Ng JK, Lammerding J, et al. J Clin Invest. 2006;116(3):743-752. doi:10.1172/JCI27125

      Aggrecan expression is substantially and abnormally upregulated in Hutchinson-Gilford Progeria Syndrome dermal fibroblasts

      Lemire JM, Patis C, Gordon LB, Sandy JD, Toole BP, Weiss AS. Mech Ageing Dev. 2006;127(8):660-669. doi:10.1016/j.mad.2006.03.004

      Nuclear lamins, diseases and aging

      Mattout A, Dechat T, Adam SA, Goldman RD, Gruenbaum Y. Curr Opin Cell Biol. 2006;18(3):335-341. doi:10.1016/j.ceb.2006.03.007

      Hutchinson-Gilford progeria mutant lamin A primarily targets human vascular cells as detected by an anti-Lamin A G608G antibody

      McClintock D, Gordon LB, Djabali K. Proc Natl Acad Sci U S A. 2006;103(7):2154-2159. doi:10.1073/pnas.0511133103

      Protein farnesyltransferase inhibitors and progeria

      Meta M, Yang SH, Bergo MO, Fong LG, Young SG. Trends Mol Med. 2006;12(10):480-487. doi:10.1016/j.molmed.2006.08.006

      Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging

      Shumaker DK, Dechat T, Kohlmaier A, et al. Proc Natl Acad Sci U S A. 2006;103(23):8703-8708. doi:10.1073/pnas.0602569103

      Prelamin A farnesylation and progeroid syndromes

      Young SG, Meta M, Yang SH, Fong LG. J Biol Chem. 2006;281(52):39741-39745. doi:10.1074/jbc.R600033200


      2005

      Incomplete processing of mutant lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition

      Glynn MW, Glover TW. Hum Mol Genet. 2005;14(20):2959-2969. doi:10.1093/hmg/ddi326

      Reduced adiponectin and HDL cholesterol without elevated C-reactive protein: clues to the biology of premature atherosclerosis in Hutchinson-Gilford Progeria Syndrome

      Gordon LB, Harten IA, Patti ME, Lichtenstein AH. J Pediatr. 2005;146(3):336-341. doi:10.1016/j.jpeds.2004.10.064

      Correction of cellular phenotypes of Hutchinson-Gilford Progeria cells by RNA interference

      Huang S, Chen L, Libina N, et al. Hum Genet. 2005;118(3-4):444-450. doi:10.1007/s00439-005-0051-7

      Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson-Gilford progeria syndrome

      Mallampalli MP, Huyer G, Bendale P, Gelb MH, Michaelis S. Proc Natl Acad Sci U S A. 2005;102(40):14416-14421. doi:10.1073/pnas.0503712102

      Dermal fibroblasts in Hutchinson-Gilford progeria syndrome with the lamin A G608G mutation have dysmorphic nuclei and are hypersensitive to heat stress

      Paradisi M, McClintock D, Boguslavsky RL, Pedicelli C, Worman HJ, Djabali K. BMC Cell Biol. 2005;6:27. Published 2005 Jun 27. doi:10.1186/1471-2121-6-27

      Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes

      Toth JI, Yang SH, Qiao X, et al. Proc Natl Acad Sci U S A. 2005;102(36):12873-12878. doi:10.1073/pnas.0505767102

      Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation

      Yang SH, Bergo MO, Toth JI, et al. Proc Natl Acad Sci U S A. 2005;102(29):10291-10296. doi:10.1073/pnas.0504641102

      Prelamin A, Zmpste24, misshapen cell nuclei, and progeria–new evidence suggesting that protein farnesylation could be important for disease pathogenesis

      Young SG, Fong LG, Michaelis S. J Lipid Res. 2005;46(12):2531-2558. doi:10.1194/jlr.R500011-JLR200

      Novel progerin-interactive partner proteins hnRNP E1, EGF, Mel 18, and UBC9 interact with lamin A/C

      Zhong N, Radu G, Ju W, Brown WT. Biochem Biophys Res Commun. 2005;338(2):855-861. doi:10.1016/j.bbrc.2005.10.020


      2004

      Genome-scale expression profiling of Hutchinson-Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis

      Csoka AB, English SB, Simkevich CP, et al. Aging Cell. 2004;3(4):235-243. doi:10.1111/j.1474-9728.2004.00105.x

      Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice

      Fong LG, Ng JK, Meta M, et al. Proc Natl Acad Sci U S A. 2004;101(52):18111-18116. doi:10.1073/pnas.0408558102

      Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome

      Goldman RD, Shumaker DK, Erdos MR, et al. Proc Natl Acad Sci U S A. 2004;101(24):8963-8968. doi:10.1073/pnas.0402943101


      2003

      LMNA mutations in atypical Werner’s syndrome

      Chen L, Lee L, Kudlow BA, et al. Lancet. 2003;362(9382):440-445. doi:10.1016/S0140-6736(03)14069-X

      Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome

      Eriksson M, Brown WT, Gordon LB, et al. Nature. 2003;423(6937):293-298. doi:10.1038/nature01629

      Hyaluronan is not elevated in urine or serum in Hutchinson-Gilford Progeria Syndrome

      Gordon LB, Harten IA, Calabro A, et al. Hum Genet. 2003;113(2):178-187. doi:10.1007/s00439-003-0958-9


      2002

      Searching for clues to premature aging

      Uitto J. Trends Endocrinol Metab. 2002;13(4):140-141. doi:10.1016/s1043-2760(02)00595-7

      en_USEnglish