PRF By The Numbers

© 2024 The Progeria Research Foundation. All Rights Reserved.

Produced by Leslie B. Gordon, MD. PhD; Medical Director

Please Do Not Reproduce Children's Photographs Without Express Permission From PRF

Table of Contents

Introduction and Collaborations	3 - 10
Overview Data	11 -20
International Progeria Registry	21 - 24
PRF Diagnostics Program	25 - 28
PRF Cell & Tissue Bank	29 - 35
PRF Medical & Research Database	36 - 40
Weighing - In Program	41 - 44
Clinical Trials	45 - 55
Progerin Biomarker	56 - 58
PRF Grants Program	59 - 60
Scientific Meetings and Workshops	61 - 64
Publications	65 - 68

PRF By The Numbers: A Data Sharing Tool

PRF By The Numbers is a data sharing tool originating from The Progeria Research Foundation's programs and services.

We translate information collected within our programs and services, and develop charts and graphs which track our progress from year to year.

➤ This allows you to assess where we've been, and the improvements we've made for children with Progeria.

Why Sharing Data Is Essential

> According to the National Institutes of Health:

"data sharing is essential for expedited translation of research results into knowledge, products, and procedures to improve human health."

http://grants.nih.gov/grants/guide/notice-files/NOT-OD-03-032.html

In other words, everyone benefits by knowing and learning as much as possible about Progeria - the scientific and medical communities, the public, and the children.

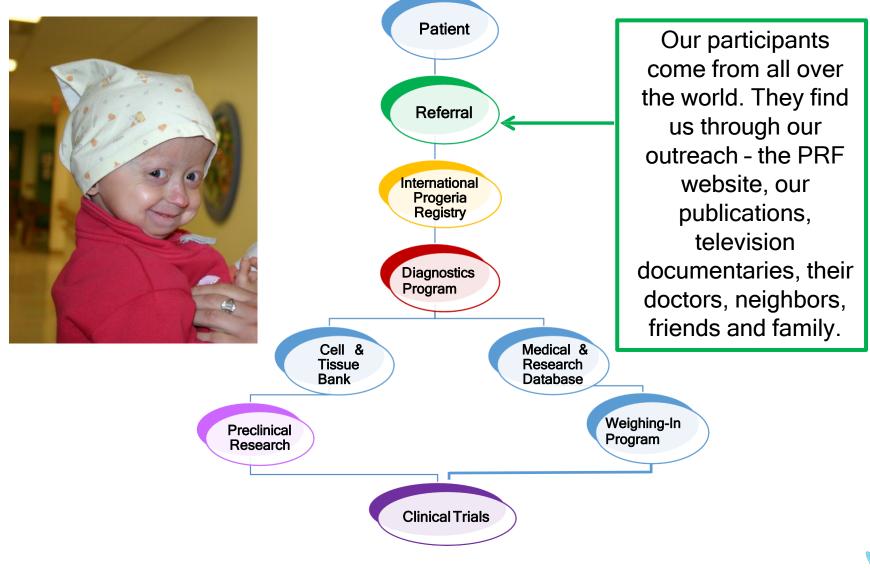
PRF By The Numbers...Here's How It Works

>We take raw data collected through our programs and services, remove any personal information to protect the participant, and present it to you in a format that is engaging and informative.

> PRF programs and services include:

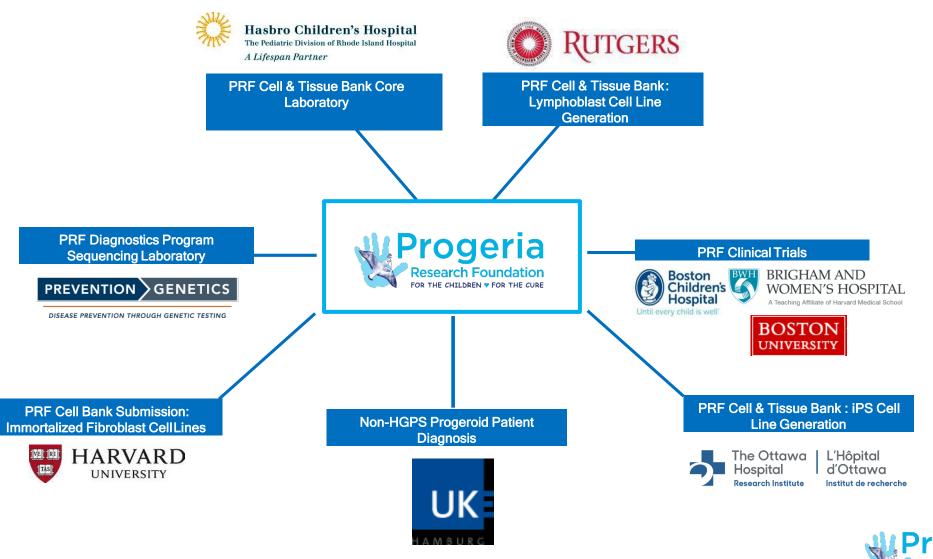
The PRF International Registry The PRF Diagnostics Program The PRF Cell & Tissue Bank The PRF Medical & Research Database PRF Research Grants Scientific Workshops Clinical Trial Funding and Participation Progeria Connect

Our Target Audience


PRF By The Numbers is intended for a broad array of users

- Families and children with Progeria
 - The general public and nonscientists of all ages
 - Scientists
 - Physicians
- 💐 The media
- This means that different types of slides will be of interest depending on who is looking at the information. We have designed this slide set so that you can pull out what is most important to you.
- We love suggestions if you don't see some facts and figures here that you think would be informative, please let us know at

info@progeriaresearch.org


PRF Programs: It All Starts With The Children

Progeria Research Foundation FOR THE CHILDREN & FOR THE CURE

© 2024 The Progeria Research Foundation. All Rights Reserved.

Program Collaborations For Success

© 2024 The Progeria Research Foundation. All Rights Reserved.

Our Program Collaborators

Our collaborating institutions are crucial to our ability to help children with Progeria. We are extremely grateful for these ongoing partnerships:

Hasbro Children's Hospital Location of The PRF Cell & Tissue Bank Program IRB approval

PreventionGenetics CLIA*-approved genetic sequence testing

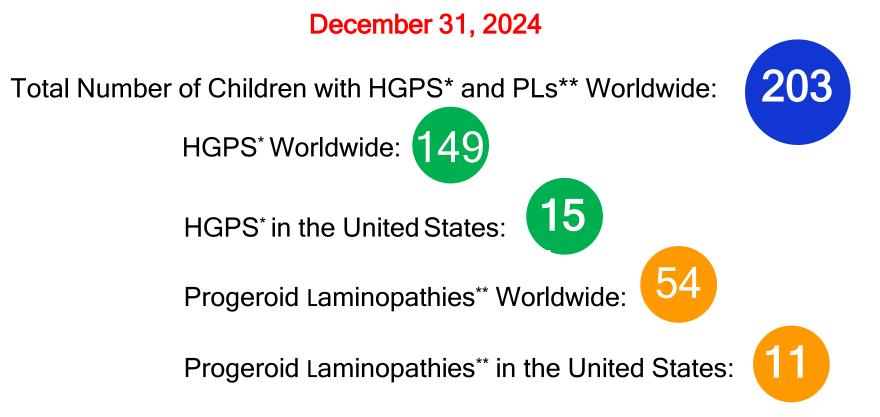
Ottawa Hospital Research Institute Induced Pluripotent Stem Cell (iPSC) CLIA*-approved generation and distribution

Our Clinical Trial Collaborators

Our collaborating institutions are crucial to our ability to help children with Progeria

Harvard University - Associated Hospitals: Boston Children's Hospital Brigham and Women's Hospital Dana Farber Cancer Institute

NIH - funded Clinical and Translational Study Unit at Boston Children's Hospital Sentynl Therapeutics, Inc.



National Institutes of Health Turning Discovery Into Health

Number of Living PRF-Identified Cases

*Children in the HGPS category have a progerin-producing mutation in the LMNA gene

**Those in the Progeroid Laminopathy category have a mutation in the lamin pathway but don't produce progerin **Cases of PL do not include those identified solely from published scientific journal articles

© 2024 The Progeria Research Foundation. All Rights Reserved.

PRF-Identified People Living with HGPS & PLs Reside in 50 Countries

Afghanistan Algeria Argentina Australia **Bangladesh** Belgium Brazil Canada China Colombia **Czech Republic** Denmark Egypt Ethiopia France Germany Guyana India Indonesia Iran Iraq Ireland Israel

Turkey Ukraine United Kingdom USA Vietnam Progeria Research Foundation OR THE CHILDREN Y FOR THE CURE

Libya

Luxembourg

Malaysia

Mexico

Nepal

Netherlands

Oman

Pakistan

Peru

Philippines

Portugal

Russia

Serbia

South Korea

Spain

Sweden

Tajikistan

© 2024 The Progeria Research Foundation. All Rights Reserved.

...and Speak 37 Languages

Amharic	Dutch	Italian	Nepali	Tagalog	Vietnamese	
Arabic	English	Japanese	Pashto	Tamil	Yiddish	
Bengali	French	Kannada	Portuguese	Telugu		
Cebuano	German	Korean	Punjabi	Tok Pisin		
Chinese	Hebrew	Malay	Russian	Turkish		
Czech	Hindi	Malayalam	Serbian	Ukrainian		
Danish	Indonesian	Marathi	Spanish	Urdu		
прогерии исследовательский фонд						

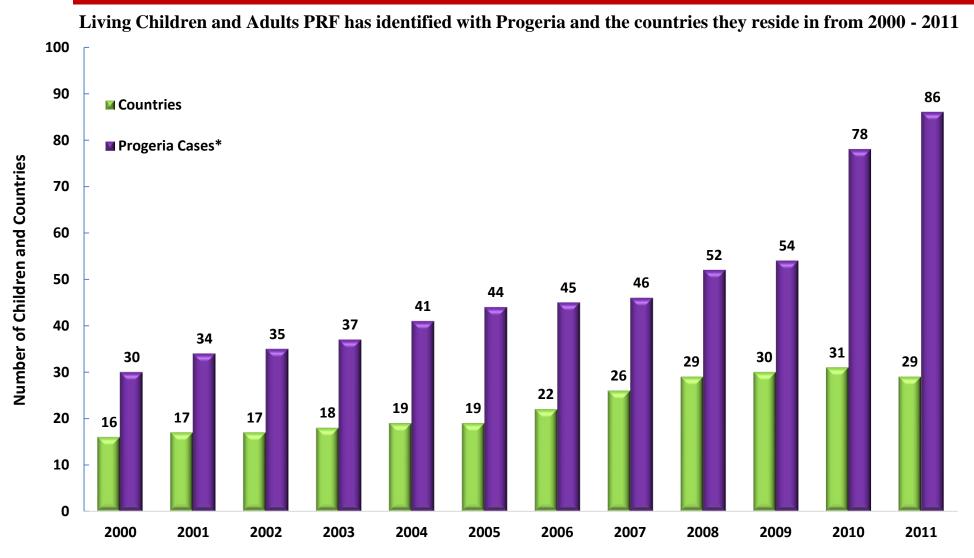
خليثلا ثاحبأ ةسسؤم

早衰症研究基金會

Progeria रिसिच फाउंडेशन

조로증 연구 재단

Progeria Araştırma Vakfı

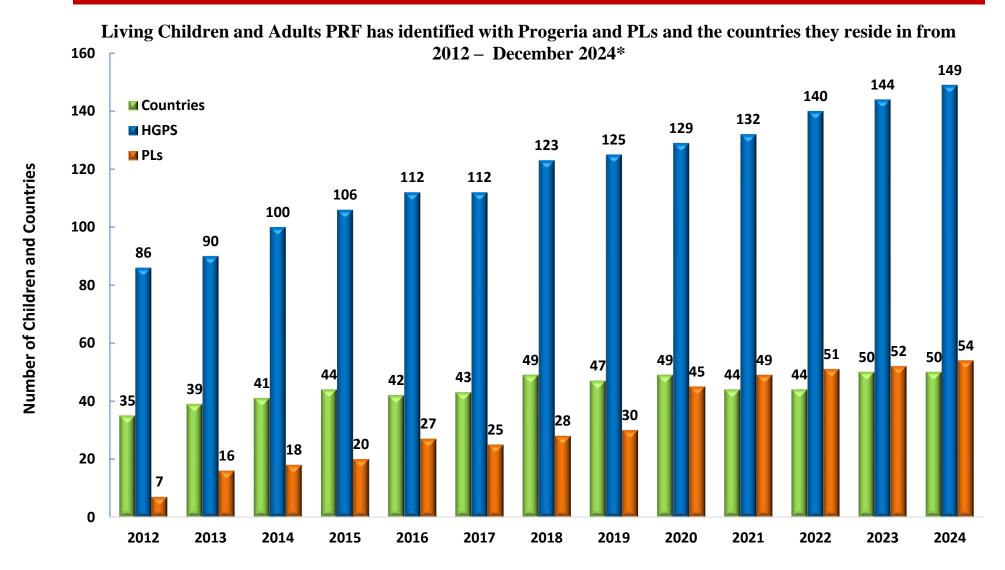

早老症研究財団

బాలుడ బాలికవయస్సముదరుకండానే వృద్ాాప్యరుప్రాలోనికినిచ్చుట రాయ్ స్ట్రండేపన్

© 2024 The Progeria Research Foundation. All Rights Reserved.

Every Year Our Numbers Grow

Year


* Total number of known cases include both HGPS & PL

* When a child passes away, numbers are decreased

Progeria Research Foundation FOR THE CHILDREN & FOR THE CURE

© 2024 The Progeria Research Foundation. All Rights Reserved.

Every Year Our Numbers Grow

Year Cases of PL do not include those identified solely from published scientific journal articles •

· When a child passes away, numbers are decreased

© 2024 The Progeria Research Foundation. All Rights Reserved.

Tracking Children with Progeria Through Prevalence

How does PRF estimate how many children we are searching for, and in what countries? We use *population prevalence*.

Prevalence is the proportion of children with Progeria per total population.

How Prevalence Is Estimated

- At PRF, we use a formula based on the number of children we've identified in the US. We then expand that out to the world population.
- We do this because we have the most complete reporting for the US and since Progeria has no gender, ethnic, or other biases, we assume that the prevalence in the US is the same prevalence in other countries.
- PRF calculates prevalence for the US based on *Worldometer* population estimates.

USA Prevalence of Progeria

December 31, 2024 population statistics:

346,351,256 people

Number of PRF-identified children with HGPS in the US (3 year average):



Average prevalence of HGPS in the US: 17 in 346 million is about

1 in 20 million people

*estimates routinely fall between 1 in 17 - 1 in 20 million people

Prevalence and World Population of Progeria

Given the world population on December 31, 2024

There are between **410** and **483** children living with Progeria worldwide

PRF strives to find every child with Progeria because in order to help every child, we must find every child

© 2024 The Progeria Research Foundation. All Rights Reserved.

Using Prevalence To Find Children

We can now use the total population estimates for any given country, in order to understand whether we have found most or all children in a particular country.

➢ For example, as of December 31, 2024:

🐝 Brazil's population was estimated as

212,405,825 people Using Prevalence, the number of children living with Progeria in Brazil is 212,405,825/20,000,000 =

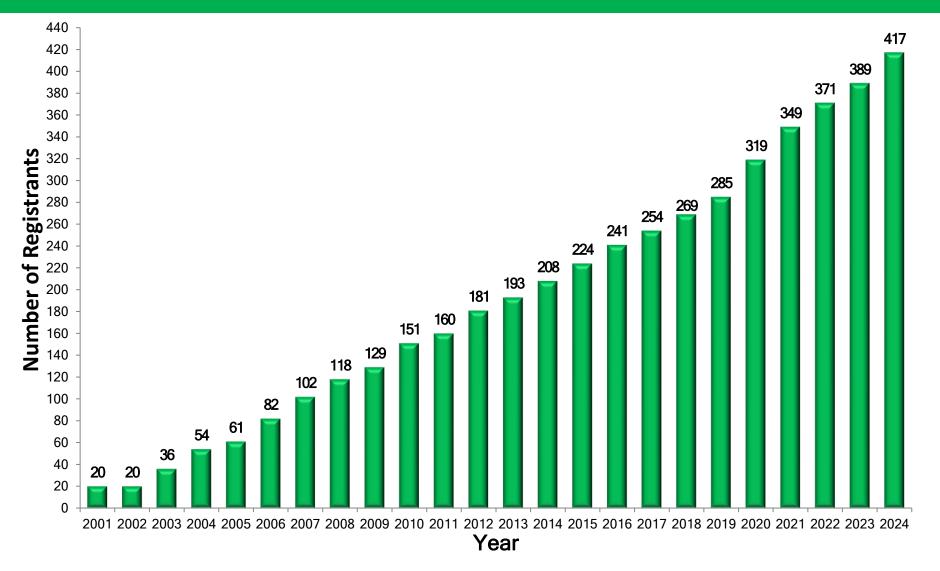
We PRF has identified 9 of these 11 children, and is searching for the 2 others

* Data based on the latest *Worldometers* estimates

International Progeria Registry*

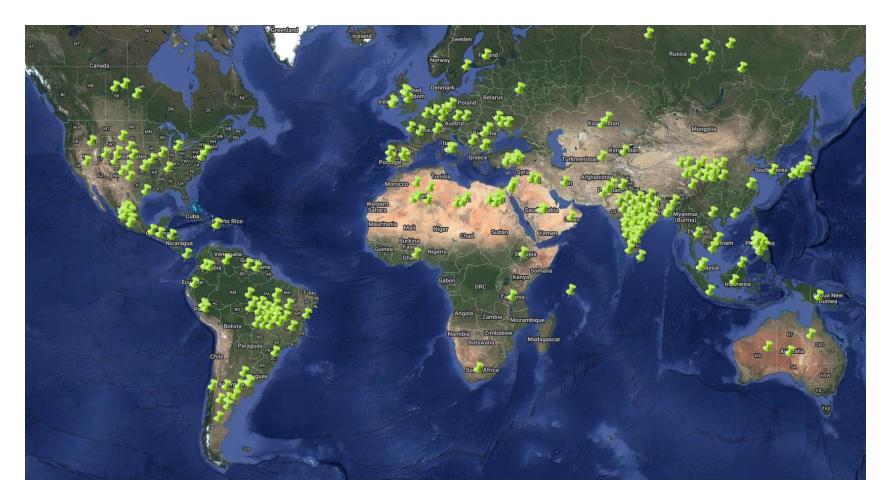
Program Goals:

➢ Patient identification

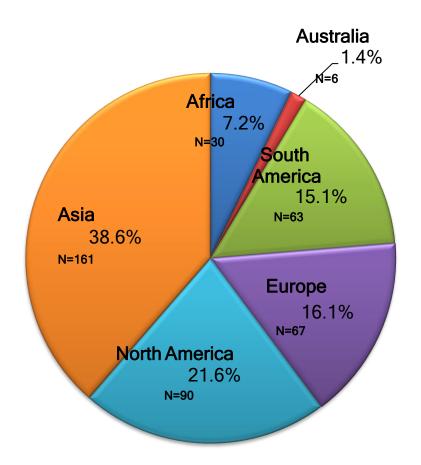

- > Outreach to patient families and their physicians
- ➤A springboard for program enrollment

Registry forms available at https://www.progeriaresearch.org/international-registry-2/

*PRF International Registry includes those with genetically confirmed or clinically suspected Progeria, as well as those with ZMPSTE24 and other possible progeroid syndromes


417 Children and Adults Have Been Registered With PRF

From 72 Countries and 1 Territory


Algeria Argentina Australia Bangladesh Belgium, Bolivia Brazil, Bulgaria Canada, Chile China, Colombia Czech Republic Denmark **Dominican Republic** Ecuador, Egypt England, Ethiopia, Finland France, Germany Guatemala, Guyana Honduras Hong Kong India, Indonesia Iran, Iraq Ireland, Israel Italy, Japan, Kazakhstan, Kyrgyzstan

Libya, Luxembourg Malaysia, Mexico Morocco, Nepal Netherlands Oman, Pakistan Palestine Papua New Guinea Panama Peru, Philippines Poland, Portugal Puerto Rico Romania, Russia Saudi Arabia Serbia, South Africa South Korea Spain, Sri Lanka Suriname, Sweden Switzerland, Tanzania Thailand, Togo Turkey, Ukraine USA, Uzbekistan, Venezuela /ietnam

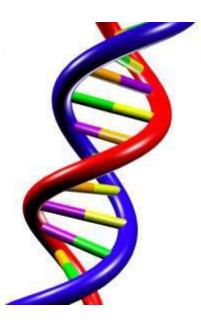
...And All Continents

Participation (%) By Continent

© 2024 The Progeria Research Foundation. All Rights Reserved.

PRF Diagnostics Program

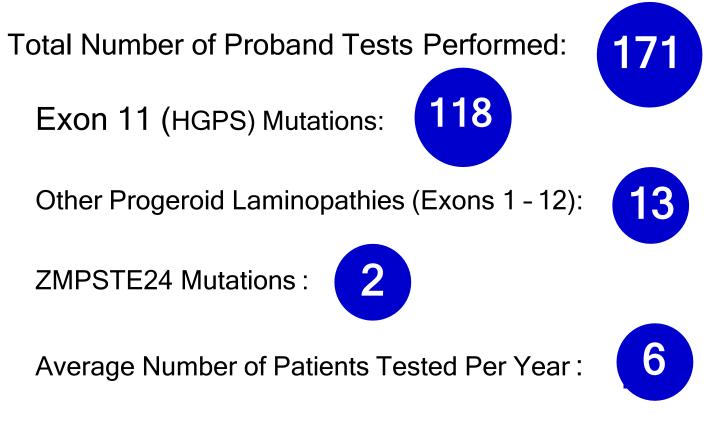
Program Goal:



Genetic Sequence Testing for Progeria-causing mutations

Pre-requisites for Testing:

- Registration with PRF International Registry
- $\mathbb{W} \geq \mathbb{O}$ ne or more of the following
 - Family history proband, prenatal
 - Phenotypic presentation proband, postnatal
 - Relative of positive proband
 - Testing information available at:


https://www.progeriaresearch.org/the-prf-diagnostic-testing-program/

Diagnostics Testing Summary

December 31, 2024

All tests are performed in a Clinical Laboratory Improvement Amendments (CLIA) certified facility.

© 2024 The Progeria Research Foundation. All Rights Reserved.

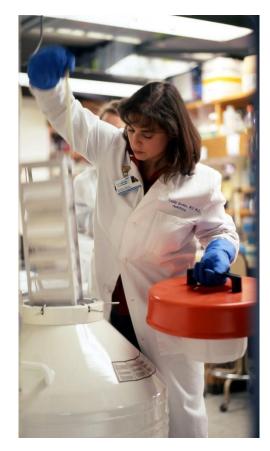
Mutations Identified Through PRF Diagnostics Program

DNA Mutation	Amino Acid Effect	Zygosity	Progerin Producing?	Number Diagnosed				
Classic HGPS - LMNA Mutation								
1824 C>T, exon 11	G608G	heterozygous	Yes	104				
Non Classic HGPS- LMNA Mutation								
1822 G>A, exon 11	G608S	heterozygous	Yes	4				
1821 G>A, exon 11	V607V	heterozygous	Yes	2				
1868 C>G, exon 11	T623S	heterozygous	Yes	1				
1968+5 G>C, intron 11	None	heterozygous	Yes	2				
1968+1 G>C, intron 11	None	heterozygous	Yes	3				
1968+2 T>A, intron 11	None	heterozygous	Yes	1				
1968+1 G>A, intron 11	None	heterozygous	Yes	1				
Progeroid Laminopathy- LMNA Mutation								
1579 C>T, exon 9	R527C	heterozygous	No	1				
1579 C>T, exon 9	R527C	homozygous	No	6				
1580G>T, exon9	R527L	Homozygous	No	2				
1619 T>C, exon 10	M540T	homozygous	No	3				
331 G>A, exon 1	E111K	heterozygous	No	1				
Progeroid Laminopathy-ZMPSTE24 Mutation								
1274T>C, exon 10	L425P	homozygous	No	2				

© 2024 The Progeria Research Foundation. All Rights Reserved.

Longitudinal Testing Data for PRF Diagnostics Program

Number of Affected Children/Adults Tested and the Number Testing Positive for *LMNA* Gene Mutation*


© 2024 The Progeria Research Foundation. All Rights Reserved.

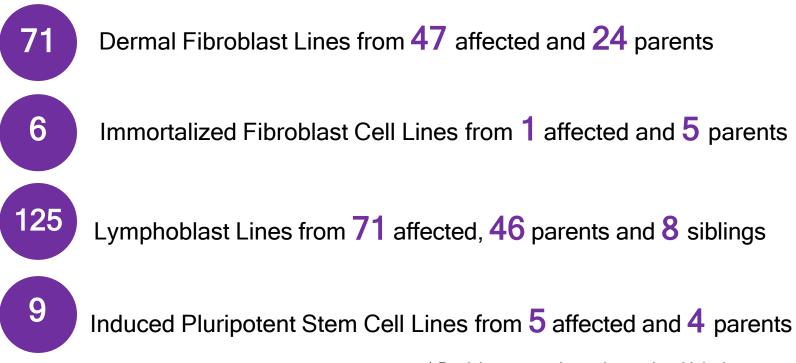
PRF Cell & Tissue Bank

Program Goals:

- Provide a resource for researchers worldwide
- Ensure the sufficient availability of genetic and biological materials essential for research aimed at understanding the pathophysiology of disease and the links between Progeria, aging and heart disease

Obtain long-term clinical data

Resource information available at: <u>https://www.progeriaresearch.org/cell-and-tissue-bank/</u>



PRF Cell and Tissue Bank Holdings

As of December 31, 2024

Total Number of Participants:

* Participants may have donated multiple times
 * Additional sample types are available for special projects upon request

Progeria Research Foundation FOR THE CHILDREN & FOR THE CURE

© 2024 The Progeria Research Foundation. All Rights Reserved.

Mutations Available in PRF Cell & Tissue Bank

DNA Mutation	Amino Acid Effect	Zygosity	Progerin Producing?	Cell Type DFN=Dermal Fibroblast LBV= Lymphoblast			
Classic HGPS - LMNA Mutation							
c.1824 C>T, exon 11	p.G608G	heterozygous	Yes	DFN, LBV, iPSC			
Non Classic HGPS- LMNA Mutation							
c.1822 G>A, exon 11	p.G608S	heterozygous	Yes	DFN, LBV			
c.1821 G>A, exon 11	p.V607V	heterozygous	Yes	LBV			
c.1824 C>T, exon 11 & SMC3 c.562 A>G	p.G608G & p.K188E	heterozygous	Yes	DFN			
c.1868 C>G, exon 11	p.T623S	heterozygous	Yes	LBV			
c.1968+5 G>C, intron 11		heterozygous	Yes	DFN			
c.1968+5 G>A, intron 11		heterozygous	Yes	DFN			
c.1968+1 G>A, intron 11		heterozygous	Yes	DFN, LBV			
c.1968+2 T>C, exon 11		heterozygous	Yes	DFN			
c.1968+2 T>C, exon 11 & c.1968+2 T>A, exon 11		heterozygous	Yes	DFN			
Pro	geroid Laminopathy-LMN	A Mutation					
c.1579 C>T, exon 9	p.R527C	heterozygous	No	LBV			
c.1579 C>T, exon 9	p.R527C	homozygous	No	LBV			
c.1580 G>T, exon 9	p.R527L	homozygous	No	LBV			
c.1619 T>C, exon 10	p.M540T	homozygous	No	DFN			
c.1762 T>C, exon 11	p.C588R	heterozygous	No	DFN			
c.1930 C>T, exon 11	p.R644C	heterozygous	No	DFN			
c.331 G>A, exon 1 & c.1158-44 C>T, intron 6	p.E111K	heterozygous	No	DFN, LBV			
c.412 G>A	p.E138K	heterozygous	No	DFN			
c.973 G>A, exon 6	p.D325N	heterozygous	No	DFN			
Progeroid Laminopathy-ZMPSTE24 Mutation							
c.1274 T>C, exon 10	p.L425P	homozygous	No	DFN, LBV			
c.743 C>T, exon 6 & c.1349 G>A, exon 10	p.P248L & p.W450Stop	heterozygous	No	DFN			

© 2024 The Progeria Research Foundation. All Rights Reserved.

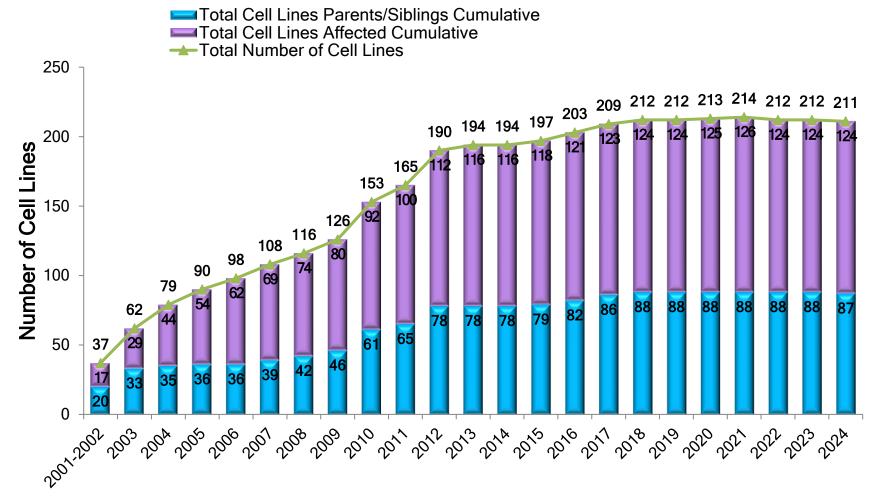
PRF Cell & Tissue Bank Distribution

As of December 10, 2024:

Countries Have Received

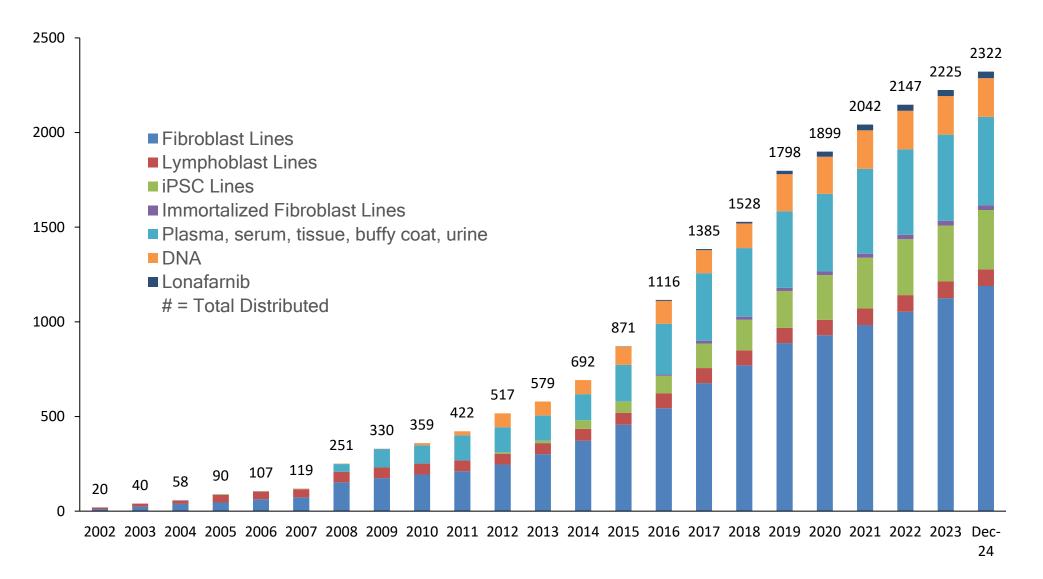
1616 Cell Lines

- **204** DNA Samples
- **467** Tissue, plasma, serum and other biological samples
 - **35** Lonafarnib Samples

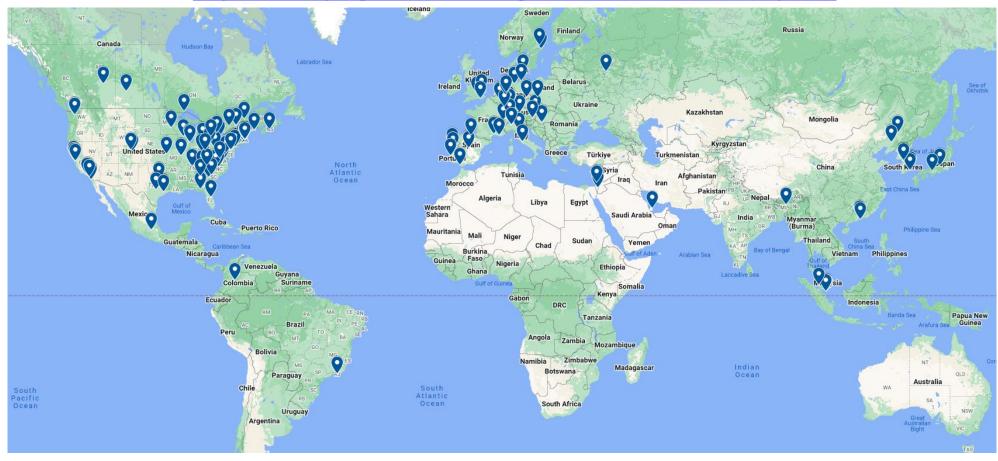


Senescent Progeria Fibroblasts in Culture

© 2024 The Progeria Research Foundation. All Rights Reserved.


Number Of Cell Lines By Year

Year


Cumulative Number of Biological Samples Distributed

Cell and Tissue Bank Recipients

Cells and biological material have been distributed to 243 laboratories in 29 countries Complete list of researchers available at: <u>https://www.progeriaresearch.org/cell-and-tissue-bank-recipients</u>

© 2024 The Progeria Research Foundation. All Rights Reserved.

PRF Medical & Research Database

Program Goals:

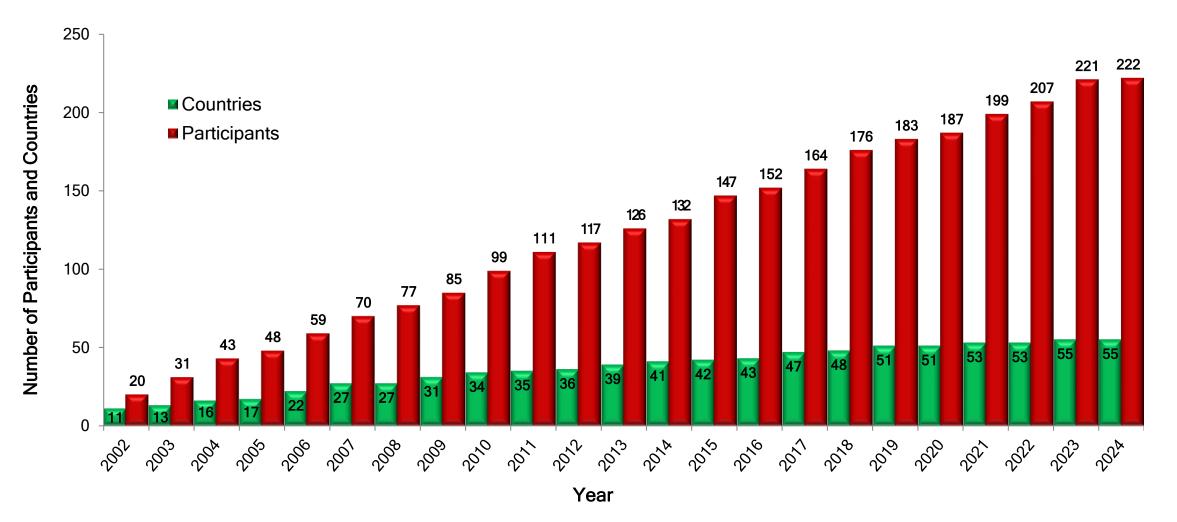
- Collect the patient health records for living and deceased children with Progeria
- Obtain long-term clinical data
- Abstract data for longitudinal and crosssectional analyses
- Better understand the clinical disease process in Progeria and aging related diseases
- Develop treatment strategies and recommendations for health care professionals and families

How The PRF Medical & Research Database Works

- Project staff obtain the patient's medical records and film studies from birth throughout the participant's lifespan.
- Medical records include visits to: primary care physicians, specialty physicians, hospital emergency rooms, hospital admissions, dentists, physical therapy, occupational therapy and school health records.
- Retrospective data abstraction protocol allows for specifically targeted or broad spectrum of data.

Enrollment information available at: <u>https://www.progeriaresearch.org/medical-database/</u>

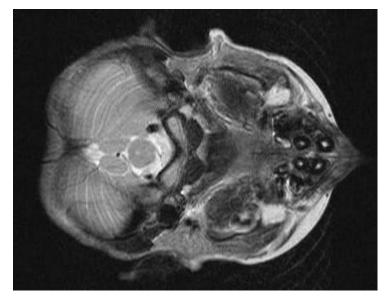
Medical & Research Database Participation

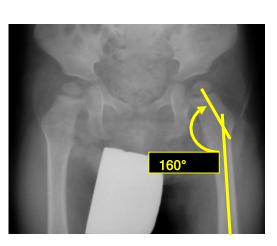

Algeria Argentina Australia Bangladesh Belgium Brazil Canada, Chile China, Columbia Denmark Dominica Republic Egypt, England France, Germany Guatemala, Guyana Honduras, India Indonesia, Ireland Israel, Italy Japan, Kazakhstan

Libya, Mexico Morocco, Nepal Netherlands Oman, Pakistan Papua New Guinea Peru, Philippines Poland, Portugal Puerto Rico Romania, Russia Senegal, Serbia South Africa South Korea Spain, Sri Lanka Suriname, Sweden Tanzania, Togo Turkey, Ukraine USA, Venezuela Vietnam

Medical & Research Database Longitudinal Enrollment

© 2024 The Progeria Research Foundation. All Rights Reserved.


Types Of Data Collected


Participants with Medical Records Reports:

Participants with Radiology Studies:

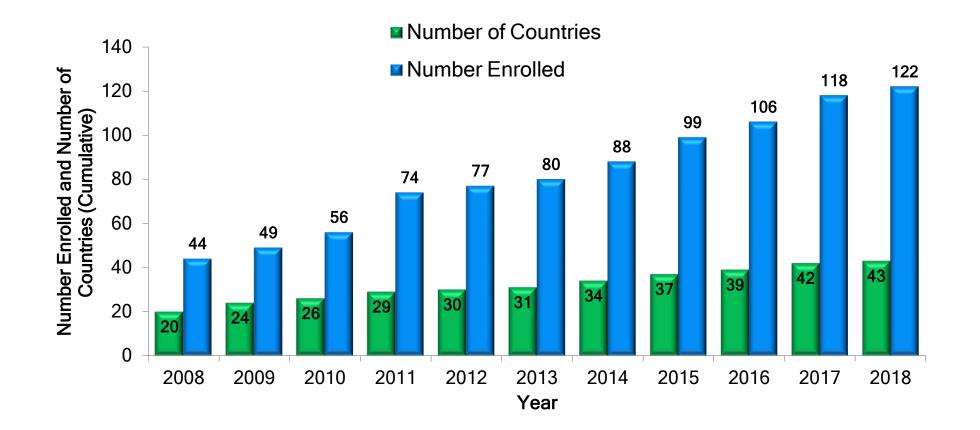
PRF Weighing-In Program

- > A sub-program of The PRF Medical & Research Database
- Collects weight-for-age data prospectively:

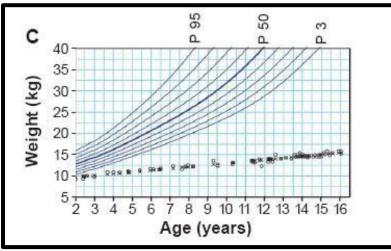
Home scale provided by PRF
 Parents weigh child weekly or monthly
 Report weights electronically

Weighing-In Program Participation

Participants are enrolled from 42 countries and 1 US territory


Argentina Australia Bangladesh Belgium Brazil Canada China Colombia Denmark Dominion Republic England Germany Guatemala Honduras India Indonesia Ireland Israel Italy Japan Mexico Morocco

Nepal Pakistan Peru Philippines Poland Portugal Puerto Rico Romania Russia Senegal South Africa South Korea Spain Sri Lanka Togo Tanzania Turkey Ukraine USA Venezuela Vietnam


Participants Enrolled In The PRF Weighing-In Program and Countries of Residence

Clinical Trials And The Weighing-In Program

- Data from this program were key in the development of primary outcome measure for the first drug treatment trial for Progeria.
- As of December 1, 2018, 90 children from The PRF Weighing-In Program have entered clinical treatment trials using this data.

Failure to Thrive Starts Towards End of Year One

© 2024 The Progeria Research Foundation. All Rights Reserved.

PRF-Funded Clinical Treatment Trials



© 2024 The Progeria Research Foundation. All Rights Reserved.

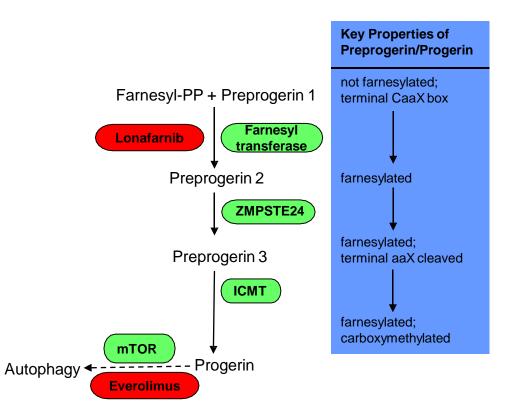
Clinical Drug Treatment Trials

Goals:

- To define the natural history of HGPS in quantifiable terms that will expand our ability to measure treatment outcome
- To assess the safety of new treatments for HGPS
- To measure effects of treatments for children with HGPS on disease status, changes in health, and survival

Participation in PRF Clinical Trials

Argentina Australia Belgium Brazil Canada China Colombia Denmark Dominican Republic Egypt England Germany Guyana Honduras India Israel Italy Japan Kazakhstan Libya Mexico


108 Children have participated in PRF Clinical Trials from 42 countries

Morocco Pakistan Peru Philippines Poland Portugal Romania Russia Serbia South Africa South Korea Spain Sri Lanka Suriname Sweden Tanzania Togo Turkey Ukraine USA Venezuela

Current Therapeutic Intervention Strategies

Post-translational processing and medications currently under investigation in clinical treatment trials for Progeria. Items in green = enzymes. Items in red = clinical trial medications that inhibit corresponding enzymes. Lonafarnib is a farnesyltransferase inhibitor. Everolimus is a rapamycin analogue that inhibits mTOR and promotes cellular autophagy. FT=farnesyltransferase.

© 2024 The Progeria Research Foundation. All Rights Reserved.

PRF-Funded Clinical Treatment Trials

Progeria

	Year	Drug(s)	Phase	Location	# Enrolled	Countries Represented	6
	2007- 2010	Lonafarnib	2	Boston	29	16	
	2009	Lonafarnib Pravastatin Zoledronate	Feasibility	Boston	5	2	
	2009 - 2013	Lonafarnib Pravastatin Zoledronate	2	Boston	45	24	
	2014 - 2021	Lonafarnib	2 (Extension)	Boston	71	32	6
	2016 - 2023	Lonafarnib Everolimus	1/2	Boston	60	27	A CAR
Co.	2018 - present	Lonafarnib	2 (Extension)	Boston	63 from 30 countries enrolled as of December 31, 2024		
(als the	(C)						2

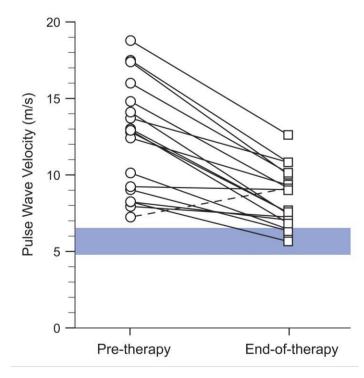
Trial 4

Clinical Treatment Trial Efficacy Results

Lonafarnib, a type of farnesyltransferase inhibitor (FTI) is our first treatment for Progeria.

≻Results showed improvement in:

Rate of weight gain


Increased vascular distensibility

Improved bone structure

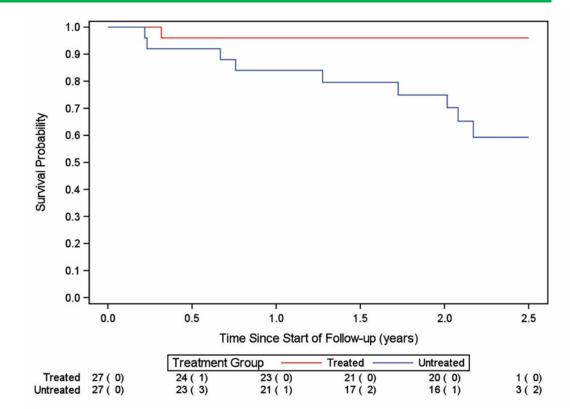
Better neurosensory hearing

Increased Lifespan

Gordon et al, PNAS, 2011

Positive Effects of Lonafarnib (Zokinvy) on Progeria: Results of PRF's Clinical Treatment Trials

Average increased lifespan of 4.3 years


Increased vascular distensibility

Improved bone structure

Better neurosensory hearing

Modest increase in rate of weight gain

Gordon et al., PNAS, 2011 and Gordon et al., JAMA, 2018 Gordon et al., Circulation 2023

JAMA | Preliminary Communication

Association of Lonafarnib Treatment vs No Treatment With Mortality Rate in Patients With Hutchinson-Gilford Progeria Syndrome

Leslie B. Gordon, MD, PhD; Heather Shappell, PhD; Joe Massaro, PhD; Ralph B. D'Agostino Sr, PhD; December 31, 2024 Joan Brazier, MS; Susan E. Campbell, MA; Monica E. Kleinman, MD; Mark W. Kleran, MD, PhD

3 Ways to Access Lonafarnib (Zokinvy)

Zokinvy (lonafarnib) is an FDA approved drug in the US. It is the current standard of care for those with Progeria. It is available through

- 1. Prescription in the US and in select non-US countries
- 2. PRF's clinical treatment trials
- 3. The manufacturer's (Eiger) Managed Access Program in select non-US countries

We are far from finished!

We must forge ahead with increased intensity and collaborative efforts to find additional treatments, and the cure!

Please contact PRF at info@progeriaresearch.org for more information on how to access Zokinvy (Ionafarnib) for your child or patient with Progeria

© 2024 The Progeria Research Foundation. All Rights Reserved.

Treatment Trial Collaborations For Success

Boston Children's

ospita

> The children are seen by physicians from:

- 🐝 Boston Children's Hospital
- 💥 Dana-Farber Cancer Institute
- Ward Brigham and Women's Hospital

> Data were also generated by scientists from:

- Alpert Medical School at Brown University
- We Brown University School of Public Health
- Wersity of California Los Angeles
- National Human Genome Research Institute
- 🐝 Schering-Plough Research Institute
- Lonafarnib generously provided by Sentynl
 Everolimus generously provided by Novartis

BRIGHAM AND

Clinical Trial Publications

Drug Effect:

- Plasma Progerin in Patients With Hutchinson-Gilford Progeria Syndrome: Immunoassay Development and Clinical Evaluation. Gordon et al., *Circulation*, 2023;147(23):1734-1744 FDA approval summary for Ionafarnib (Zokinvy) for the treatment of Hutchinson-Gilford progeria syndrome and processing-deficient progeroid laminopathies. Suzuki et al., *Genetics in medicine*, 2023;25(2):100335 Association of Lonafarnib Treatment vs No Treatment With Mortality Rate in Patients With Hutchinson-Gilford Progeria Syndrome. Gordon et al., *JAMA*, 2018, 319(16):1687-1695. Survey of Plasma Proteins in Children with Progeria Pre-therapy and On-Therapy with Lonafarnib. Gordon et al., *Pediatric Research*, 2018;83(5):982-992 Clinical Trial of the Protein Farnesylation Inhibitors Lonafarnib, Pravastatin, and Zoledronic Acid in Children With Hutchinson-Gilford Progeria Syndrome. Gordon et al., *Circulation*, 2016 Jul 12;134(2):114-25. Seeking a Cure for One of the Rarest Diseases: Progeria. Collins, *Circulation*, 2016 Jul 12;134(2):126-9. Impact of Farnesylation Inhibitors on Survival in Hutchinson-Gilford Progeria Syndrome. Gordon et al., *Circulation*, 2014 Jul 1;130(1):27-34.
- Moving from Gene Discovery to Clinical Trials in Hutchinson-Gilford Progeria Syndrome. King et al., Neurology, 2013 Jul 30;81(5):408-9.
- Neurologic Features of Hutchinson-Gilford Progeria Syndrome after Lonafarnib Treatment. Ullrich et al., Neurology, 2013, 81:427-430.
- Clinical Trial of a Farnesyltransferase Inhibitor in Children with Hutchinson-Gilford Progeria Syndrome. Gordon et al., Proceedings of the National Academy of Sciences, 2012 Sep 24.

General:

- Clonal hematopoiesis is not prevalent in Hutchinson-Gilford progeria syndrome. Díez-Díez, et al., GeroScience. 2023;45(2):1231-1236
- Pubertal Progression in Adolescent Females with Progeria. Greer et al., Journal of Pediatric and Adolescent Gynecology, 2018;31(3):238-241
- Phenotype and Course of Hutchinson-Gilford Progeria Syndrome. Meredith et al., New England Journal of Medicine, 2008, 358(6): 592-604.

Dermatology:

Initial Cutaneous Manifestations of Hutchinson-Gilford Progeria Syndrome. Rork et al., Pediatric Dermatology, 2014, 1-7.

Clinical Trial Publications Continued

Dental:

Microbiome at Sites of Gingival Recession in Children with Hutchinson-Gilford Progeria Syndrome. Bassir et al., Journal of Periodontology. 2018, 89(6): 635-644.

Hutchinson-Gilford Progeria Syndrome: Oral and Craniofacial Phenotypes. Domingo et al., Oral Diseases, 2009, 15(3): 187-195.

Cerebrovascular:

Imaging Characteristics of Cerebrovascular Arteriopathy and Stroke in Hutchinson-Gilford Progeria Syndrome. Silvera et al., *American Journal of Neuroradiology*, 2013 May;34(5):1091-7. Cardiology:

Abnormal Myocardial Deformation Despite Normal Ejection Fraction in Hutchinson-Gilford Progeria Syndrome. Olsen, et al. J Am Heart Assoc. 2024;13(3)

Progression of Cardiac Abnormalities in Hutchinson-Gilford Progeria Syndrome: A Prospective Longitudinal Study. Olsen FJ, et al. Circulation. 2023;147(23):1782-1784.

Cardiac Abnormalities in Patients With Hutchinson-Gilford Progeria Syndrome. Prakask, et al., JAMA Cardiology, 2018, Apr 17;115(16):4206-4211.

Mechanisms of Premature Vascular Aging in Children with Hutchinson-Gilford Progeria Syndrome. Gerhard-Herman M, et al., Hypertension. 2012;59(1):92-97.

Skeletal:

Baseline Range of Motion, Strength, Motor Function, and Participation in Youth with Hutchinson-Gilford Progeria Syndrome. Malloy et al., *Phys Occup Ther Pediatr*. 2023 Jan 10:1-20. Skeletal maturation and long-bone growth patterns of patients with Progeria: a retrospective study. Tsai et al., *The Lancet. Child and Adolescent Health*. 2020 Apr;4(4):281-289. Extraskeletal Calcifications in Hutchinson-Gilford Progeria Syndrome. Gordon et al., *Bone*. 2019 Aug;125:103-111.

Craniofacial Abnormalities in Hutchinson-Gilford Progeria Syndrome. Ullrich et al., American Journal of Neuroradiology. 2012 Sep;33(8):1512-8.

<u>A Prospective Study of Radiographic Manifestations in Hutchinson-Gilford Progeria Syndrome</u>. Cleveland et al., *Pediatric Radiology*, 2012 Sep;42(9):1089- 98. Epub 2012 Jul 1. Hutchinson-Gilford progeria is a skeletal dysplasia. Gordon, et al., *Journal of Bone and Mineral Research*. 2011 Jul;26(7):1670-9.

Ophthalmology:

Ophthalmologic Features of Progeria. Mantagos et al., American Journal of Ophthalmology, 2017 Oct; 182:126-132.

Audiology:

Otologic and Audiologic Manifestations of Hutchinson-Gilford Progeria Syndrome. Guardiani et al., The Laryngscope, 2011, 121(10): 2250-2255.

Progerin as a Biomarker for Progeria

Progerin is the toxic protein produced by cells with progeria in place of the normal lamin A protein

Normal lamin A plays a role in cell division, but the toxic progerin gets stuck to the nuclear membrane of cells, and its accumulation causes progeria

A biomarker is "a biological molecule found in blood, other body fluids, or tissues that is a sign of a normal or abnormal process, or of a condition or disease" (National Cancer Institute)

Treatments for progeria aim to decrease the amount of progerin produced by the body.

© 2024 The Progeria Research Foundation. All Rights Reserved.

Publication of the Progerin Biomarker

Circulation

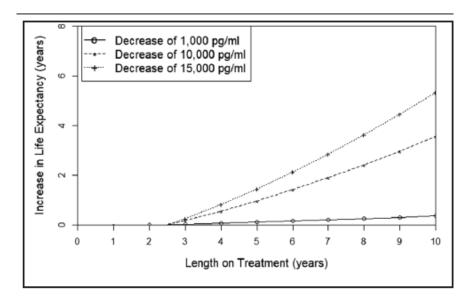
ORIGINAL RESEARCH ARTICLE

Plasma Progerin in Patients With Hutchinson-Gilford Progeria Syndrome: Immunoassay Development and Clinical Evaluation

Leslie B. Gordon[®], MD, PhD; Wendy Norris, MS; Sarah Hamren, BS; Robert Goodson, BS; Jessica LeClair, PhD; Joseph Massaro, PhD; Asya Lyass, PhD; Ralph B. D'AgostinoSr, PhD; Kelsey Tuminelli, MS; Mark W. Kieran[®], MD, PhD; Monica E. Kleinman[®], MD

Dr. Gordon et al. 2023 developed an assay to measure progerin in blood plasma

6


Further Findings of the Progerin Biomarker Study

Plasma progerin levels were 95x higher in those with progeria than in the average healthy human

Treatment with lonafarnib decreased progerin levels by 35-62% on average

Lifespan increase was shown to be linked to decreased progerin levels and longer time on treatment

Long-term treatment with lonafarnib (10+ years) resulted in a lifespan increase of about 35%

Gordon et al. 2023, Circulation

© 2024 The Progeria Research Foundation. All Rights Reserved.

PRF Grant Funding

As of December 31, 2024:

P.P

P.J

N.Y

A.A

A.A.

A.

- Since inception 281 grant application received and 85 funded
- PRF has funded 69 principal investigators from 55 institutions in 14 countries
 - Lamina A, progerin, Lamin B in HGPS and aging
 - Genetics and nuclear function
 - Preclinical Drug Therapy
 - Molecular Abnormalities and Therapies
 - Vascular Pathology
 - Mouse Models
 - Stem Cell Investigations and Therapy
 - Clinical Trials

PRF Grantees

PRF has funded 69 principal investigators from 55 institutions in 14 countries Complete list of Grantees available at:

https://www.progeriaresearch.org/grants-funded/

© 2024 The Progeria Research Foundation. All Rights Reserved.

PRF Scientific Meetings

Meeting Goals:

To promote collaboration between basic and clinical scientists toward progress in Progeria, cardiovascular, and aging research PRF has held international scientific meetings.

International Workshops Promoting Global Interest In Progeria, Cardiovascular Disease And Aging

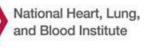
These are large multi-day workshops open to all scientists. Clinical and basic researchers spend intense days sharing data and planning new collaborations for progress towards treatments and cure.

Various NIH Institutes have funded all international workshops through R13 and other granting mechanisms

Other organizations have also generously sponsored workshops

HOLOGIC

National Institute


National Human Genome **Research Institute**

National Heart, Lung, and Blood Institute

carly&cares

DSF Charitable Foundation

Celgene

Committed to improving the lives

National Center for Advancing Franslational Sciences

Turning Discovery Into Health

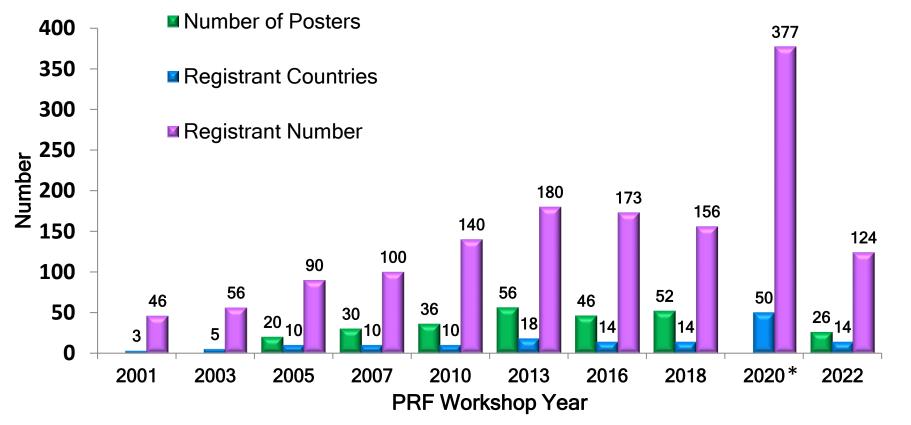
National Institutes of Health

ORDR Office of Rare **Diseases Research**

NATIONAL CANCER INSTITUTE

GLENN FOUNDATION

FOR MEDICAL RESEARC


american federation for aging research

© 2024 The Progeria Research Foundation. All Rights Reserved.

Growth of Global Interest In PRF Workshops

* 2020 was a webinar. Posters N/A

Subspecialty Scientific Meetings

Small, focused meetings designed to promote and support work in areas of high interest for Progeria

First Genetics Consortium Meeting - "Searching for the Progeria Gene", August 23, 2002, Brown University, Providence, RI

Second Genetics Consortium Meeting - "Post-gene Discovery", July 30, 2003, Bethesda, MD

Bone Marrow Transplant Meeting - "Forging Ahead by Exploring Potential Treatments", April 25-26, 2004, National Institutes of Health, Bethesda, MD

New Frontiers in Progeria Research (2012), Boston, MA

The first "Progeria Aortic Stenosis Intervention Summit", May 2, 2023, Virtual by Zoom

National Human Genome Research Institute

Scientific Publications

As of December10, 2024:

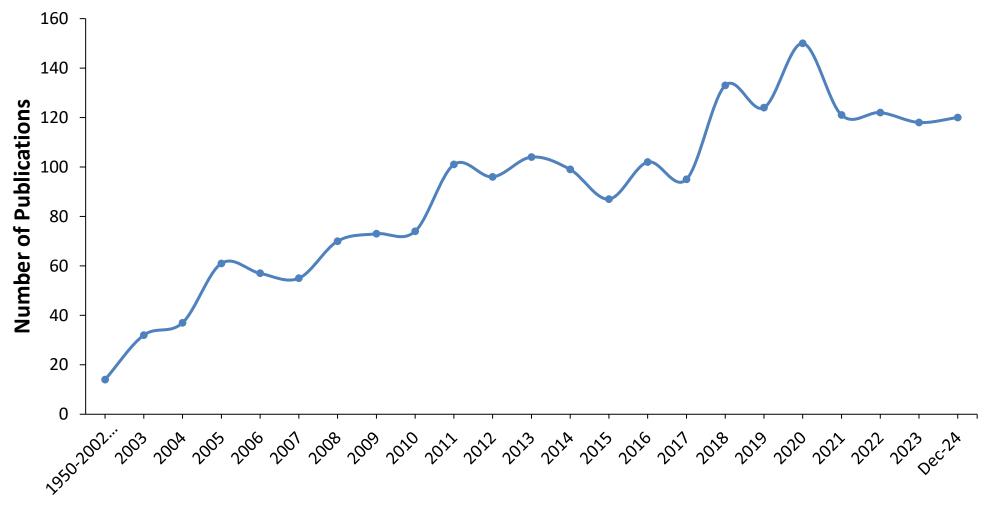
Scientific articles have been published citing The Progeria Research Foundation Grants Funding Program

- Scientific articles have been published citing PRF Cell & Tissue Bank resources:
 - Publication list at www.progeriaresearch.org/prf-cell-and-tissue-bankpublications/
- Scientific articles have been published citing The PRF Medical & Research Database:
 - Publication list at <u>www.progeriaresearch.org/medical-database/</u>

35

Scientific articles have been published from clinical trial data

See slide #54 and #55



Scientific articles have been published concerning PRF Scientific Workshops

Progeria Related Publications

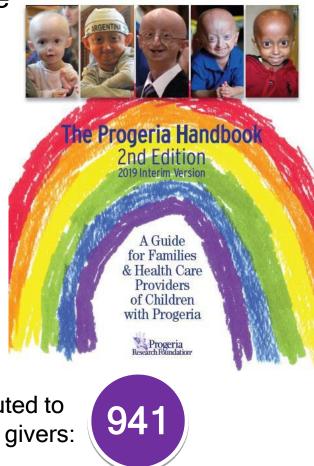
Today over 100 publications on Progeria per year are published in well known and peer-reviewed scientific journals read by researchers worldwide.

Year

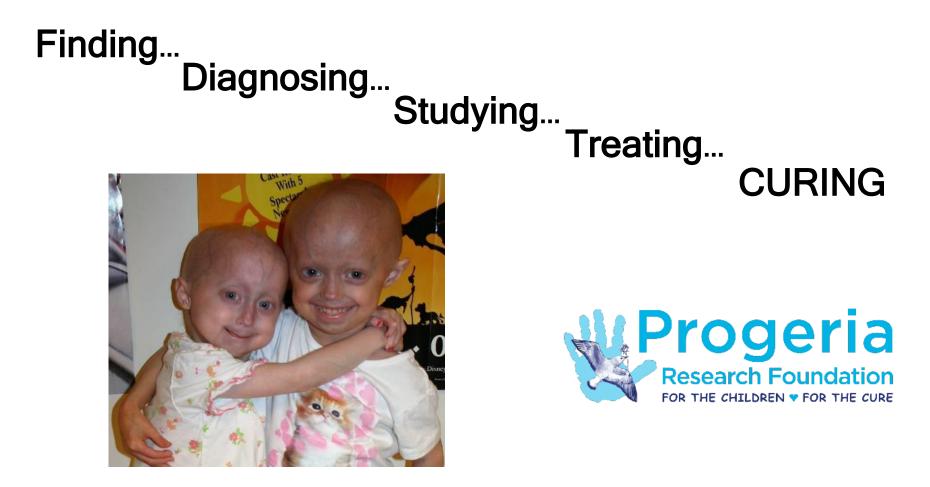
Progeria Clinical Care Handbook

The Progeria Handbook 2nd Edition. A Guide for Families & Health Care Providers of Children with Progeria. *The Progeria Research Foundation.* Leslie B. Gordon MD, PhD; Medical Director (editor) 2019.

Provided in Chinese, English,


Italian, Japanese, Portuguese and Spanish

Expert contributors from Boston Children's Hospital


Number of Progeria Care Handbooks distributed to families of those with Progeria and their care givers:

PREPARED BY THE PROGERIA RESEARCH FOUNDATION

The Progeria Research Foundation

Together We WILL Find The Cure!

www.progeriaresearch.org

© 2024 The Progeria Research Foundation. All Rights Reserved.